Annual Report 2019 Korea Research Institute of Chemical Technology

hemistry for Ls hemistry for EARTH

Reinforcing the competitiveness of chemical industries and contributing to the resolution of national and social problems by performing R&D in chemical and convergence technologies and providing public infrastructure and services

KRICT Overview

- 8 Mission & Goals
- 10 Organization
- 12 History
- 14 Global Network
- 16 KRICT at a glance
- 18 UST-KRICT School

2019 Focus

- 20 Research Highlights
- 28 News Highlights

Major Research Activities of Divisions

- 34 Chemical & Process Technology Division
- 44 Advanced Materials Division
- 54 Therapeutics & Biotechnology Division
- 64 Division of Specialty & Bio-based Chemicals Technology
- 70 Chemical Platform Technology Division
- 84 Convergent Research Centers

Appendix

- 94 List of SCI Articles Published in 2019
- 114 List of International Patents Issued in 2019
- 121 List of International Patents Registered in 2019
- 123 List of Technology Transferred in 2019

President's Greeting

KRICT, Towards a Sustainable Society

As one of Korea's major industries, the chemical industry has enhanced the quality of life and played a pivotal role in the advancement of civilization.

Since its establishment in 1976, KRICT has served as national leader of the chemical industry, making significant contributions to the development of chemical and transdisciplinary technologies, technology transfers, fostering of chemical experts, and various infrastructural services.

In 2019, KRICT received more public attention than in past years. I can say with confidence that KRICT embraced changes, implemented preemptive measures, and demonstrated its capacity as a government-funded research institute. Some highlights include our rapid response to Japan's export regulations, the establishment of KRICT's R&R, and the development of long-term plans for the next decade. With the advent of the fourth industrial revolution, the institute is developing plans to construct a next-generation soft chemistry research building to focus on big data research. This is expected to lay the foundation for KRICT to mature into a hub of big data for the field of chemistry.

In terms of research, KRICT achieved the most outstanding results in its history, elevating its status as a specialized research institute.

In particular, we developed perovskite solar cells with the With

world's best efficiency, entered phase 2 of a clinical trial for ulcerative colitis treatment, and completed technology transfers on MOF water adsorbents and biodegradable polymers. Four of KRICT's studies, namely, "Development of MOF water adsorbent with low temperature regeneration and dehumidification technology," "TNIK inhibitor technology transfer," "Development of new liquid organic hydrogen storage system with world's best efficiency," and "Development of ultra-high-purity N₂O collection/ purification process for semiconductors from adipic acid waste gas," were included in the list of Korea National R&D Performance Evaluation Awards 2019. "Development of MOF water adsorbent with low temperature regeneration and dehumidification technology" was also featured in the list of outstanding research achievements by government-funded research institutes.

As a leading chemical research institute in Korea, KRICT will strengthen its competitiveness in chemical material research, concentrate resources on overcoming social issues, participate in research on eco-friendly and sustainable chemical technology, and utilize medicinal chemistry and AI web services in response to the fourth industrial revolution, thereby doing its part to support a sustainable society.

With best wishes,

Mihge Yi

Yi Mihye President of KRICT

KRICT Overview

Annual Report 2019 Korea Research Institute of Chemical Technology

KRICT Overview

- 8 Mission & Goals
- 10 Organization
- 12 History
- 14 Global Network
- 16 KRICT at a glance
- 18 UST-KRICT School

8

KRICT Overview

Mission & Goals

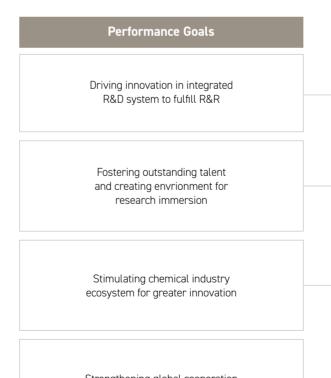
Mission

Management Goals & Essential Values

hemistry for Lhemistry for EARTH

* US: Utilization & Sustainability

Reinforcing the competitiveness of chemical industries and contributing to the resolution of national and social problems by performing R&D in chemical and convergence technologies and providing public infrastructure and services



centered R&D

Performance Goals

Strengthening global cooperation and internal/external communication

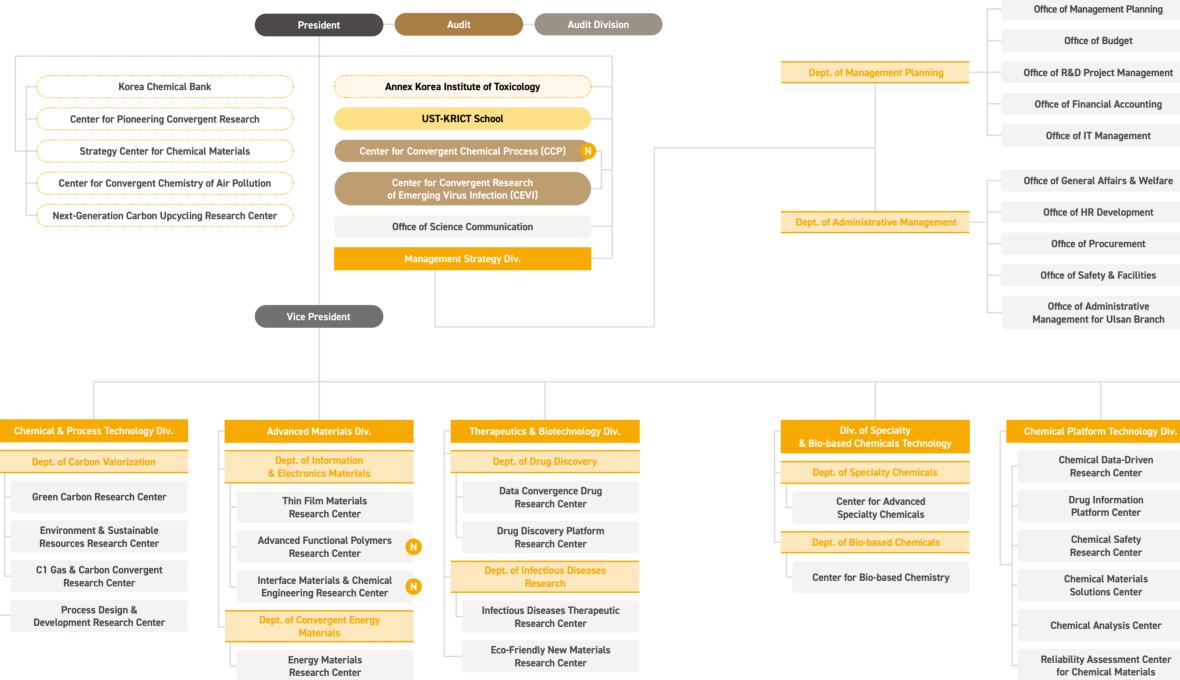
Publicness

 Supporting innovative pursuits of the chemical industry Strengthening R&D capacity to resolve social issues

Openness

• Strengthening internal/ external communication • Expanding global cooperation

Final Goals


Developing mid/long-term novel technology, strengthening R&D capacity to solve social problems, achieving institutional R&R through choices and focus

Fostering outstanding talent, establishing a culture of safety consciousness, building environment for research immersion by relieving researchers' burden of administrative affairs

Strengthening competitiveness in chemical industry by supporting SME, commercializing technology based on IP strategies throughout business cycle, and supporting the growth of emerging industries

Enhancing global reputation of institute and improving awareness of chemistry-related issues by promoting strategic international cooperation and strengthening internal/ external communication

Organization

ment Planning
Budget
ect Management
al Accounting
anagement
ffairs & Welfare
evelopment
curement
& Facilities
inistrative Ulsan Branch
otsan branch

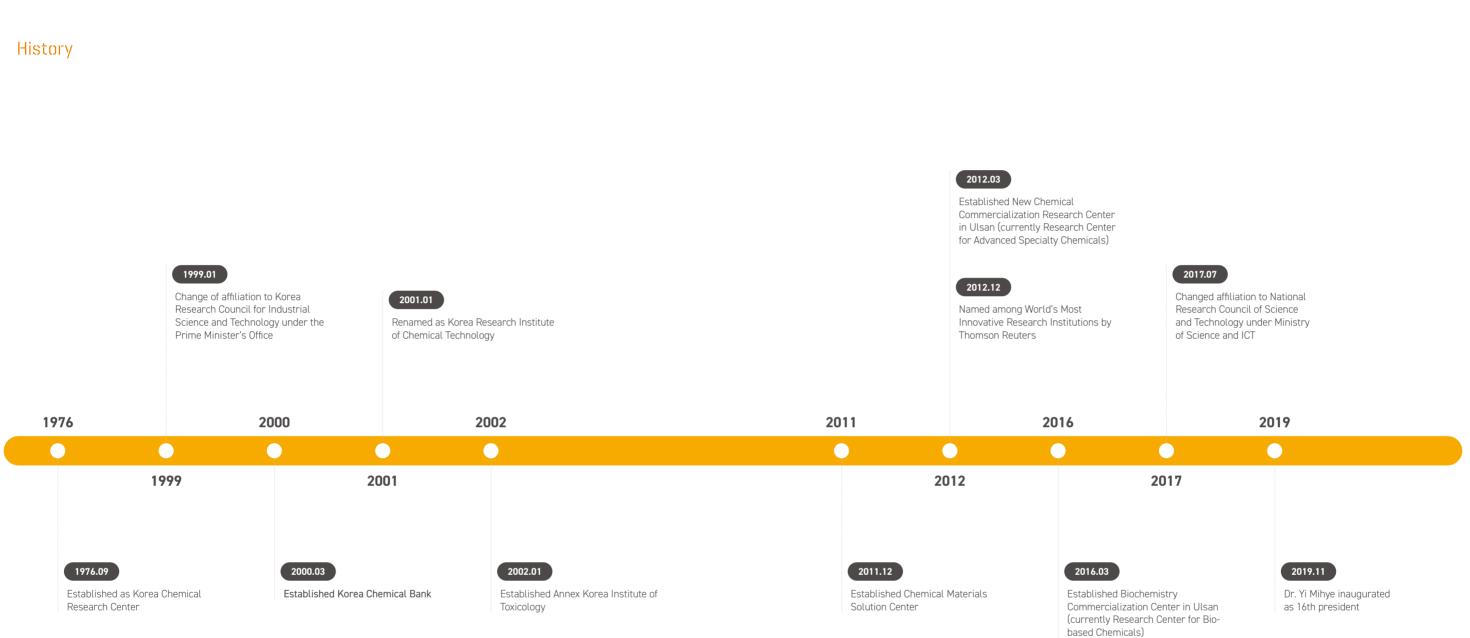
N

N

Research Strategy Div.

Office of Policy Development

Chemistry Information Team


Office of Strategy Planning

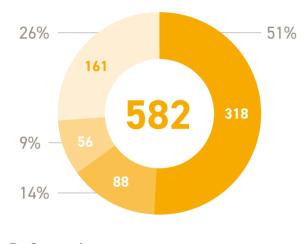
Office of Small & Medium Enterprises Support

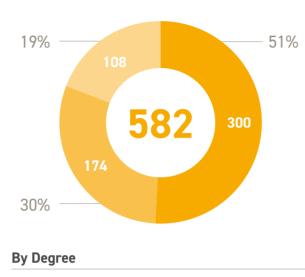
Office of Technology Commercialization

Office of Global Cooperation

Uzbekistan Project Team

40th anniversary of KRICT

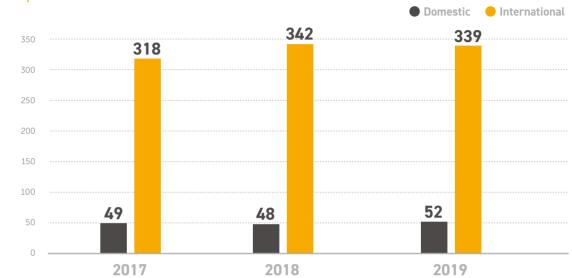

Global Network(Status of MOU Implementation)



KRICT Overview

KRICT at a glance

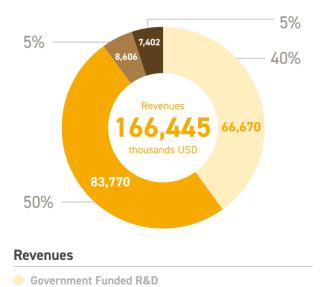
Personnel


By Occupation

- Researcher
- Administrator
- Technician / Engineer
- Specialist

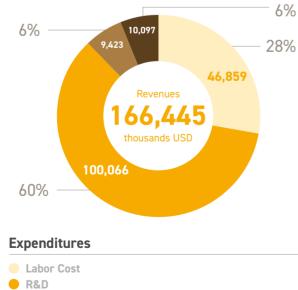
Doctor's

- Master's
- Bachelor's

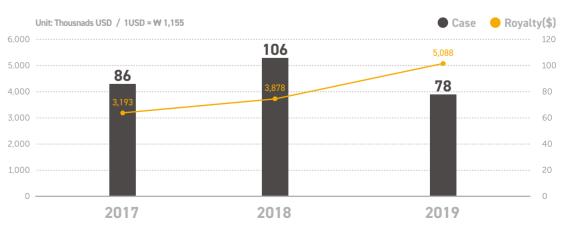

SCI Paper Publication

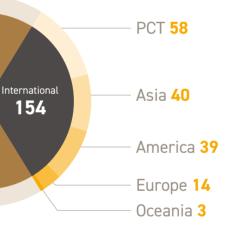
318

Patents Application


Budget

Government Institutional Funding


Private Sector Funded


• Others

- Operating Cost
- Others

Technology Transfer

UST-KRICT School



KRICT offers various training programs to educate future professionals in the field of chemistry, the most notable being the UST-KRICT School. The UST-KRICT School is a joint education system between UST and KRICT. The UST-KRICT School offers a systematic educational approach centered around major and specialized fields of research.

At the UST-KRICT School, students are provided with a skilled teaching faculty, cutting edge research facilities, a unique academic curriculum, student welfare programs,

and more. Through this, the UST-KRICT School strives to foster global professionals equipped with both knowledge and practical skills, who will become the leaders of tomorrow's chemical industry.

In 2019, 43 students successfully completed the UST-KRICT School program and received their degrees; 29 students in the master's program, 9 students in the Ph.D. program, and 5 students in the integrated program.

2019 Focus

Annual Report 2019

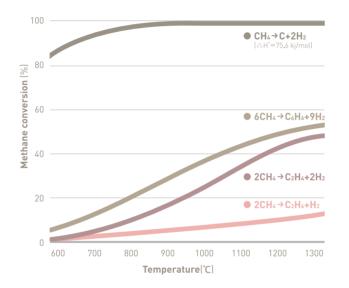
Korea Research Institute of Chemical Technology

2019 Focus

- 20 Research Highlights
- 28 News Highlights

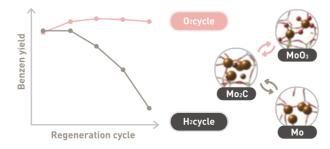
2019 Focus

Research Highlights

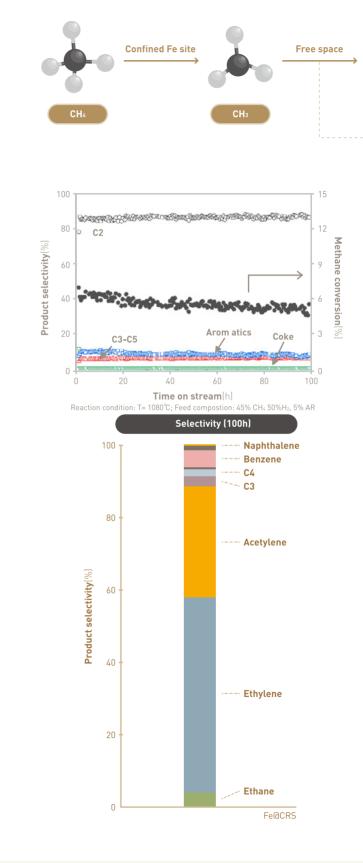

Non-oxidative direct conversion of methane: synthesis of hydrogen, ethylene, and aromatics through CO₂-free conversion process

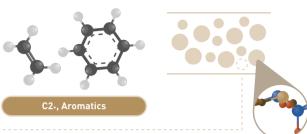
Dr. Kim Yong Tae / ytkim@krict.re.kr Dr. Han Seung Ju / hansj@krict.re.kr Mr. Lee Sung Woo / swlee@krict.re.kr Dr. Kim Seok Ki / skkim726@krict.re.kr C1 Gas&Carbon Convergent Research Center Dr. Kim Hyun Woo / ahwk@krict.re.kr Chemical Data-Driven Research Center

We seek to develop chemical processes for the conversion of cost advantaged raw materials to higher margin performance chemicals. The advent of gas production technology has resulted in plentiful methane resources around the world. Rising concerns about methane emissions accentuate the need for an effective transformation to commodity chemicals. Catalysis in the non-oxidative direct conversion methane will be the workhorse of next chemical industry. We have proposed at the basic level catalytic reactor systems that works effectively in hydrocarbon pool and radical-chemistry.


Methane has a strong C-H bond (425 kJ mol⁻¹), which limits the application of only 15% as a feedstock for the conversion process. Methane reforming based indirect routes (i.e. syngas conversions) such as methanol synthesis and gas-to-liquid (GTL) are just commercially available routes and must be mega-size plants to overcome thermal efficiency limits (\leq 60%). On the other hand, direct routes for the conversion of methane without oxidants can offer significant economic potential by improving process efficiencies and reducing facility capital investment. Ethylene and aromatics, mainly produced in petroleum, that has a potential capitalizing on methane advantage. This conceptual thermochemical route requires high energy (\geq 700°C) and it is important to ensure a narrow product distribution and increase product yield. Increasing the purity of co-produced hydrogen is another area that increases the economics of non-oxidative methane conversion.

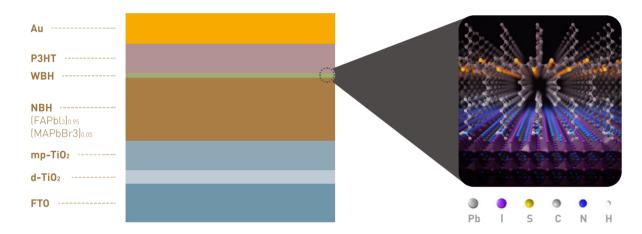
We have designed a bifunctional metal-acid catalyst (i.e. Mo carbides on H-ZSM-5 zeolite) for the production of benzene from methane. Detailed reaction mechanism studies show that the Mo carbide sites initially activate the C-H bonds of methane and the acidic sites catalyze the C-C coupling reaction to produce aromatic compounds. The main drawback of the catalytic system is stability in which zeolite acid sites undergo severe deactivation due to coke formation. We did comparative studies




on the reaction-regeneration cycles under both oxidative and reductive conditions. What we learned from this systematic study is that the selective recovery of Brønsted acid sites near Mo sites other than isolated acid sites is sufficient to restore the catalytic activity in terms of benzene formation. Theoretical calculations indicated that partial oxidation of coke precursor (i.e. naphthalene) at 450°C was more favorable than its partial hydrogenation at 850°C on the Mo clusters in ZSM-5 channel.

We note that zeolite-based catalysts have limitations on thermodynamics and thermal stability, making it difficult to increase

the vield of benzene by 10% or more. Another issue in terms of kinetics is that the control of consecutive reactions of unsaturated hydrocarbons in zeolite pores is not easy. We have attempted to design surface active sites by optimizing variables such as site proximity to selectively produce ethylene and aromatics from methane. The nonporous iron confined cristobalite catalyst (Fe@CRS) prepared through the melt-fusing method is demonstrated to be effective for the nonoxidative direct conversion of methane. The Fe@CRS catalyst was proper to control radical chemistry where methane conversion is more advantageous on the catalytic surface than on the gas phase based on the reaction kinetics. The silica confined Fe species (Fe-Si bond) not only selectively promote the methane activation but also inhibit the coke formation on the silica surface by reducing its defect sites. Electronic structure calculations indicated that these confined Fe sites were more favorable for methyl radical formation and a high coke resistance than Fe₃C clusters. By optimizing reaction parameters, the Fe(C)CRS catalyst exhibited 6.9-5.8% methane conversion and 86.2% C2 selectivity for 100 h with co-feeding of 50% H_2 at 1080°C. We note that the Fe(C)CRS catalytic system requires further optimization using numerous ways to increase the product yield, especially ethylene by more than 20%. Detailed mechanism studies on radical chemistry for high-temperature conversion technologies would help to maximize the yield of target products.


Our key findings will facilitate researchers working in the field of catalysis to design catalytic surfaces with detailed characterization techniques as a global innovation technology. We hope that the methane will be a game changer in the petrochemical industry in the next few years.

2019 Focus

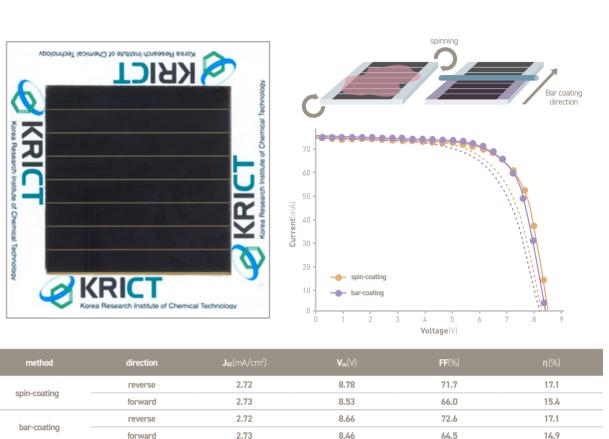
Research Highlights

Efficient, stable, and scalable perovskite solar cells using poly(3-hexylthiophene)

Dr. Seo Jangwon / jwseo@krict.re.kr Dr. Jeon Nam Joong / nijeon@krict.re.kr Dr. Shin Seong Sik / sss85@krict.re.kr Dr. Helen Hejin Park / hhpark@krict.re.kr Dr. Seulki Song / sksong@krict.re.kr Mr. Park Eun Young / eypark@krict.re.kr **Energy Materials Research Center**

Double-layered halide architecture of P3HT-based perovskite solar cells. Left, the structure of an n-i-p perovskite solar cell based on a DHA using P3HT as the hole-transport material. Right, schematic structure of the interface between the WBH and P3HT

In the early stage, our team at KRICT had developed the fundamental core technologies including device structure, film fabrication, and materials composition to obtain highly efficient perovskite solar cells. So far, we have received world-record efficiencies in this area for 7 times, which were recorded in NREL's best cell efficiency chart.


Based on key technologies from unit cells, we have focused on the development of large-area perovskite solar modules with good reliability towards commercialization. Furthermore, our research scope also covers flexible perovskite solar cells and silicon/perovskite tandem solar cells.

Perovskite solar cells typically comprise of electron- and holetransport materials deposited on each sides of a perovskite active layer. So far, only two organic hole-transport materials, poly(triarylamine) (PTAA) and 2,2',7,7'-tetrakis(N,N-di-pmethoxyphenylamine)-9,9'spirobifluorene (spiro-OMeTAD),

have led to state-of-the-art performance in these solar cells. However, these materials have several drawbacks in terms of commercialization, including high cost, the need for hygroscopic dopants that trigger degradation of the perovskite layer, and limitations in their deposition processes.

Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties, low cost and ease of fabrication, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16%.

Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface.

method	direction	J _{sc} (mA/cm ²)
spin-coating	reverse	2.72
	forward	2.73
bar-coating	reverse	2.72
	forward	2.73

Large-scale fabrication of P3HT-based DHA solar cells. Left, Photograph of a 5 cm × 5 cm DHA-based solar module. The designated illumination area was estimated as 24.97 cm² according to the average of five separate area measurements. Right, Current-voltage (J-V) curves of the DHA-based solar modules formed by depositing the P3HT layer using spin-coating (orange) and bar-coating (purple) methods

Our device has a certified power conversion efficiency of 22.7 % with hysteresis of $\pm 0.51\%$; exhibits good stability at 85% relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95% of the initial efficiency.

02

We extended our platform to large-area modules (24.97 cm²)which are fabricated using a scalable bar-coating method for the deposition of P3HT-and achieve a power conversion efficiency of 16.0%. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research.

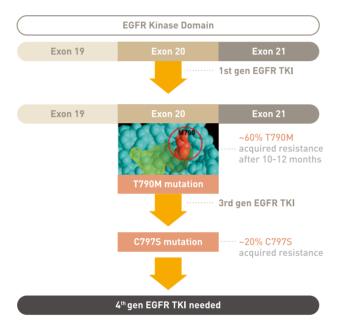
23

Research Highlights

Discovery of BBT-176

Dr. Lee Kwangho / kwangho@krict.re.kr Data Convergence Drug Research Center

Lung cancer is the most common cancer worldwide with 2.5 million new cases each year (more than 220,000 new patients in US alone 2016). Non-small cell lung cancer (NSCLC) accounts for almost 85 percent of all lung cancers. A five-year survival rate in advanced NSCLC patients is less than 20%. Many of NSCLC are caused by oncogenic driving mutation of related proteins. Epidermal growth factor receptor (EGFR) activating mutations account for 30-40% of NSCLC patients in East Asian population and 10-15% in European descendants.


Iressa & Tarceva are clinical in-use first generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) featuring quinazoline-based reversible inhibition targeting the major EGFR driving mutations such as EGFR L858R and EGFR ex19 deletions. Osimertinib is a pyrimidine-based irreversible EGFR-TKI addressing Iressa & Tarceva-resistant EGFR T790M mutation while sparing wild-type EGFR activity.

Professor Byoung-Chul Cho at Yonsei University Hospital identified and reported EGFR C797S mutation resistant to Osimertinib for the first time. EGFR C797S mutants are resistant to currently available treatment.

So our research team has collaborated Yonsei University Hospital toward EGFR resistant mutants inhibition for unmet'first-inclass'lung cancer drug development. After 4 years, BBT-176 was identified as the first small molecule inhibitor with potent activity to EGFR C797S mutants with excellent oral drug properties.

BBT-176 was licensed to domestic biopharmaceutical company (BridgeBio Therapeutics) and recently finished its pre-clinical development study. In pre-clinical studies, BBT-176 showed antitumor efficacy against EGFR C797S triple mutations. It also demonstrated enhanced efficacy when combined with anti-EGFR antibodies.

BridgeBio Therapeutics submitted Investigational New Drug (IND) application for the treatment of patients with NSCLC who developed resistance to osimertinib (Tagrisso) to Korean Ministry of Food and Drug Safety (KFDS) and US Food and Drug

Scheme of development for 4th generation EGFR tyrosine kinase inhibitors to address evolving EGFR mutations and its frequencies; BBT-176 is a firstin-class 4th generation EGFR TKI currently under development

Administration (FDA) at December 2019 and received IND approval from US FDA on January 2020. BBT-176 will initiate Phase 1 clinical trial on early of year 2020 in United States to find out BBT-176 safety and anticancer efficacy.

Following the IND clearance, BridgeBio Therapeutics plans to initiate a dose-escalation study to find the maximum tolerated dose (MTD) of BBT-176. The dose-escalation phase will be the first part of a phase I/II first-in-human study in Korea, which will evaluate the safety, tolerability, and anti-tumor efficacy of the drug in patients with advanced NSCLC. A dose-expansion study will be the second part of the study, which will re-evaluate the safety, tolerability, and efficacy of the MTD of BBT-176 in patients in the United States and Korea. **Research Highlights**

Tough yet biodegradable plastic bag: Cellulose/chitosan nanofiber-reinforced polybutylene succinate (PBS)

Dr. Hwang Sung Yeon / crew75@krict.re.kr Dr. Oh Dong Yeop / dongyeop@krict.re.kr

Polyethylene (PE) and polypropylene (PP) are sufficiently tough as materials for plastic bags; however biodegradable plastics including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and polybutylene succinate (PBS) typically give poor mechanical properties. The reason is that biodegradability and mechanical property are mutually exclusive i.e. both pro perties have trade-off relationship. PLA and PBS show the tensile strength of 35-45 MPa and the tear strength of <1,000 N/cm. To address the mechanical property issue of bioplastics, many inorganic nano-particles are incorporated into bioplatics. Their mechanical reinforcement was not effective due to their poor dispersion in polymeric matrices. In addition, inorganic nano-particles create fine dust and are not degradable at all.

Cellulose and chitin (chitosan) nanofibers are emerging reinforcing materials for bioplastics. Their single fibers have an elastic modulus of 40-100 GPa, and they are biodegradable and renewable as well. Theoretically, the incorporation of cellulose and chitin nanofibers can improve the mechanical properties of bioplastics. However, it has been hardly realized mainly due to the poor dispersion of cellulose and chitin nanofibers in bioplastics. To address the homogenous dispersion cellulose and chitin nanofibers in bioplastics, high-cost and time-consuming process are necessarily required.

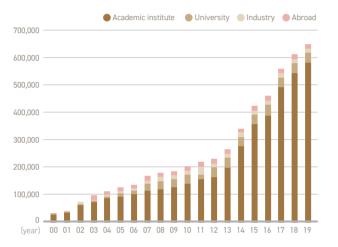
Cellulose and chitin nanofibers were extracted from wood pulp from crab shell, respectively. 1) The natural nanofibers are homogeneously dispersed in di-alcohol monomer i.e. ethylene glycol (liquid) of PBS via our know-how. 2) the nanofiber-dispersed monomer is in-situ polymerized. Through our method, the only 0.1 weight% (1000 ppm) of the incorporation of cellulose or chitosan nanofibers increases the mechanical properties of PBS: 1.6 times in tensile strength of 65-70 MPa and 2.3 times in toughness. The tensile mechanical properties are as high as those of Nylon 6. Our key technology is homogenous dispersion of cellulose nanofiber via a simple and cost-effective nanofiber modification. We have

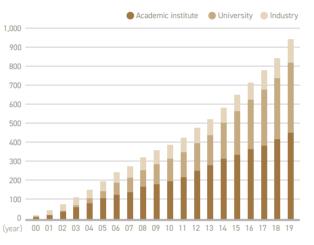
03

 $\mathbf{04}$

Dr. Jeyoung Park / jypark@krict.re.kr Center for Bio-based Chemistry

01 The proto-type of plastic bag made of our new bioplastic (nanofiber-reinforced PBS) 02 A commercial PP film fails at 5 kg. However, our bioplastic withstand a 20 kg weight.


the whole original technologies for a series of processes from the nanofiber production to the plastic bag product. Our patents include 1) the production of natural nanofibers 2) the dispersion know-how of natural nanofibers 3) the plastic product of natural nanofiber-reinforced PBS, PBAT, and PLA.


This process is also reproduced in a pilot scale (50 kg). We have demonstrated the prototypes of tough plastic bag using our newly invented bioplastic. Also, It is the first case where the sufficient mechanical property, pilot production, and 3) full biodegradability (0.5-1 year) are achieved at the same time.

In addition, cellulose and chitin nanofibers can improve the gas barrier properties of plastic bags. Typically, oxygen permeates the plastic packaging, degrading foods. Improving the gas barrier usually requires metallic or halogenated polymeric coatings; however, both cause environmental concerns. Our researchers coated cellulose and chitin nanofibers on the biodegradable PLA films. This sustainable and biorenewable coating achieves the very low oxygen transmission rate of below 0.5 mL m⁻² day⁻¹. This invention potentially can replace the current non-biodegradable and non-sustainable plastic packaging. **Research Highlights**

Establishment of Web based database platform for drug discovery

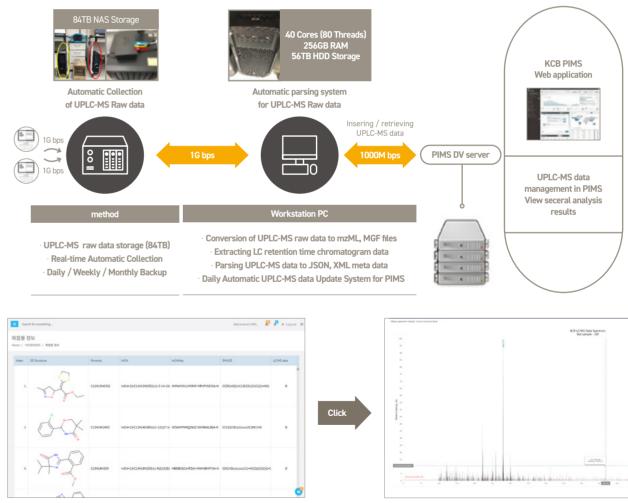
Dr. Lee, Sunkyung / leesk@krict.re.kr **Drug Information Platform Center**

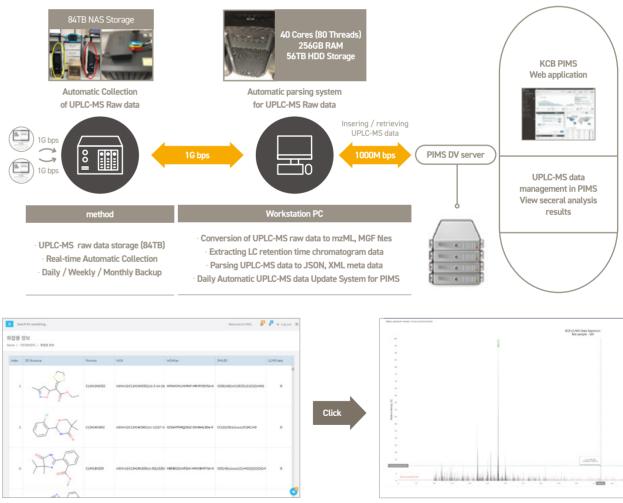
Korea Chemical Bank (KCB) was established in 2000 as a national platform for drug discovery and chemical biology through collection, management, and provision of biologically-relevant chemical libraries. KCB was designated as the Korea National Chemical Repository since 2010 by the Ministry of Science and IT

(MSIT) of Korea.

In 2019, around 40,000 compounds including research products deposited by Korean research scientists, were collected resulting in 640,000 cumulative compounds. KCB also supported 188 projects including 97 new projects, and provided 239,000 libraries to domestic researchers in 2019. During 20 years KCB collected around 6,500,000 biological activity data using 640,000 compounds on 937 different drug targets. Recently, there are many needs on data services for data-driven drug discovery research.

Then, integrated database platform for drug discovery has been established in 2019 for web based services. KCB database


Numbers of Projects Using KCB Libraries


containing the information on 640,000 compounds' management and their 6,500,000 biological data cumulated for 20 years, was integrated with open databases such as ChEMBL, DrugBank, and PDB. Researchers can search sub-structure of chemical compounds with their analytical data (UPLC-MS, nmr), molecular descriptors, and biological activities. Additionally, they can get the information on drug targets, diseases, biological pathways, and prediction values on physicochemical properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles of compounds.

Researchers can see 3D structures of proteins and ligands with crystal structures. As well as providing information, researchers can proceed the submission of compounds and requests on utilization of chemical libraries and data through this web service in the second half of 2020 after completion of security program.

KCB usually analyzes 30,000 ~ 40,000 compounds using UPLC-MS a year for qualifying libraries. The system on automatic collection of analytic data from instrument and transformation of data to image

There are 21 publications with citation of KCB in 2019 including high impact journal "Cell". KCB contributes to technology transfer of

2019 Focus

05

was also established. Researchers can monitor the analytical data of compounds in this web platform.

Automatic data collection / conversion / viewer from UPLC-MS

preclinical candidate for HBV form academic to bio venture.

News Highlights

Completed development and technology transfer of anticancer drug candidate

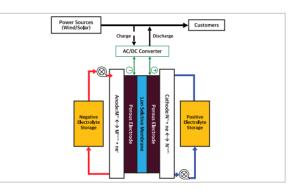
On January 22, KRICT signed a technology transfer agreement with Bridge Bio for its newly developed anticancer drug candidate.

Jointly developed by the KRICT team led by Dr. Lee Kwangho and Yonsei Cancer Center, the new candidate material targets lung cancer and other types of cancer. The candidate drug inhibits specific genes or proteins and selectively kills cancer cells, thus presenting new possibilities in the treatment of lung cancer involving mutations.

In cooperation with Bridge Bio, KRICT will assess the effectiveness of the candidate drug against lung cancer and other types of cancer, and conduct pre-clinical studies, including a GLP toxicity test.

Completed development and technology transfer of new compound for colorectal cancer treatment

A team led by Dr. Lee Hyuk of KRICT and the Yonsei Cancer Center completed technology transfer of a new compound for colorectal cancer treatment to FutuRx, a global biotech incubator. The technology was used to launch a new Israeli startup, TNIK Therapeutics.


FutuRx, OrbiMed, J&J, Takeda, KRICT, and Yonsei University, the shareholders of TNIK Therapeutics, will share their experiences on new drug development and provide advice on future moves for the company.

The compound takes effect by inhibiting the binding of TNIK and β -Catenin in the body. The accumulation of β -Catenin promotes the growth and transfer of cancer cells by entering cell nuclei and binding with TNIK. As such, colorectal cancer can be treated by inhibiting the binding of TNIK and β -Catenin.

Through experiments, the team verified that the compound is effective at preventing the spread of cancer when administered alone or together with other anticancer agents. The material is expected to open new possibilities in the development of drugs for other types of cancer.

Commercialization begins for vanadium redox flow battery following development and technology transfer

A team comprised of Dr. Hong Young TaiK, Dr. Kim Tae Ho, and Dr. Lee Jang Yong completed technology transfer of poly(phenylene)-based membrane materials for use in vanadium redox flow batteries. The technology has now entered the early stage of commercialization. The team formed a multiblock copolymer of poly(*p*-phenylene) structure, containing a sulfonic acid group, and maximized durability by strengthening the connecting links and fabricating a reinforcing composite membrane. The new material maintained its durability and stable performance even under high current densities.

In November last year, KRICT transferred the technology to Standard Energy, a company specializing in vanadium redox flow batteries. The new ion membrane technology has undergone basic performance tests, including a battery life test. The results verified the high efficiency and stable capacity of vanadium redox flow batteries. The team plans to accelerate commercialization by cooperating with Standard Energy in safety evaluation and production optimization.

PVDF for secondary batteries to be commercialized

KRICT signed an agreement with Chemtros on the transfer of technology for the manufacturing of PVDF, an essential material of secondary batteries and solar cells.

The first stage of this manufacturing technology involves producing VDF monomers through pyrolysis and refinement of raw materials, and the second uses polymerization to turn VDF into PVDF. The KRICT team developed the VDF monomer process as well as the VDF-to-PVDF process.

The technology was just as outstanding as the world's leading pyrolysis-based VDF manufacturing process and produced VDF of high purity. The pyrolysis conversion rate was 99.5%, and purity levels of VDF and refined VDF were 98.5% and 99.97%, respectively. Meanwhile, the pyrolysis conversation rates achieved by Japan, the United States, and Germany fall in the range of 95 to 98%.

Previously, due to its lack of domestic manufacturing technology, Korea relied on imported PVDFs. The proposed technology is expected to reduce PVDF imports, which amount to an annual 4,000 tons.

News Highlights

On-site MERS diagnostic assay moves forward in commercialization

World's largest R2R Asia Conference was held in KRICT for the first time

A team led by Dr. Kim Hong Gi of the Center for Convergent Research of Emerging Virus Infection (KRICT CEVI) transferred a 20-minute on-site MERS diagnostic technology to Wells Bio, a subsidiary company of Access Bio.

Dr. Kim's team succeeded in optimizing an antibody that binds to the MERS-CoV antigen, thereby facilitating the detection of MERS-CoV. The antibody was used to develop an on-site diagnostic kit that allows rapid detection (within 20 minutes) of persons affected with MERS in airports.

The two institutes plan to pursue commercialization based on KRICT's rapid MERS diagnostic technology and the company's high-sensitivity rapid diagnostic kit platform. They will also conduct clinical trials in UAE, and share experimental facilities in conducting joint research on the prevention of new/variant diseases.

From May 28 to May 30, KRICT and the Association of International Metallizers, Coaters, and Laminators (AIMCAL) *held the 2019 R2R** Roll-to-roll (R2R): A high-tech process involving continuous coating of functional organic and inorganic materials on rolls of flexible plastic or foil

Asia Conference, the world's largest conference on R2R coating technology, at the Didimdol Plaza of KRICT in Daejeon.

This year's conference attracted more than 150 domestic and international experts in R2R equipment, materials, and coating processes. The three-day event was comprised of 11 sections, including coating and surface treatment, R2R sputtering, moisture barriers, and batteries.

* Established in 1970, AIMCAL is an association of laminators and metallizers who have gathered to enhance the quality of coated products. It organizes an annual R2R conference focused on functional coating and flexible devices.

** Roll-to-roll (R2R): A high-tech process involving continuous coating of functional organic and inorganic materials on rolls of flexible plastic or foil

2019 Carbon Upcycling Tech Global Forum was held

The 2019 Carbon Upcycling Tech Global Forum, which aims to strengthen international cooperation on carbon upcycling technology***, was held under the theme of "Climate Technology, the Key to a Better Future."

The forum attracted representatives and experts from around the world, including Europe, the United States, and China, and served as a platform for the sharing of the latest trends and projects related to Carbon Capture and Utilization (CUU) technology. Dr. Choi Ji Na, the head of the Office of Carbon Upcycling R&D Strategy(currently Environment & Sustainable Resources Research Center), said, "The forum, which is in its fourth year, attracted more than 600 participants during preregistration alone. This shows that there is a growing interest in CCU technology. Since the goals of reducing greenhouse gases by 2030 and creating new industries through CCU technology can only be achieved through cooperation, I hope that this forum will be an opportunity for industries, universities, research institutes, and governments to share strategies and solutions for the greater good."

*** Carbon upcycling technology: Conversion of unused carbon (carbon dioxide, carbon monoxide, methane, etc.) in greenhouse gases and by-product gases into useful products.

Dr. Yi Mihye inaugurated as 16th KRICT president

On November 11, KRICT held an inauguration ceremony for Dr. Yi Mihye, its 16th president, in the auditorium of the Administration Building. President Yi, an expert in material development, has served as a KRICT researcher for more than 30 years. Since joining KRICT in 1985, she has made significant contributions to polyimide resin research, to which she devoted more than two decades of her career.

By re-establishing KRICT's R&R, President Yi hopes for KRICT to play a role in providing solutions to social issues through science and technology. She will concentrate resources on the development of material component technology, paving the way for Korea to acquire domestic technology and to strengthen its international competitiveness in new material development.

President Yi said, "KRICT will establish long-term strategies for material development, and actively pursue research projects to enhance domestic technology and explore possibilities in emerging markets."

News Highlights

Completed technology transfer of natural multi-functional material and super bioplastic

KRICT transferred its natural multi-functional material synthesis catalytic technology and eco-friendly super engineering plastic manufacturing technology to Activon and IlKwang Polymer, respectively.

The natural multi-functional material synthesis catalytic technology is a catalyst-based chemical transition technology used to produce 1,2-pentanediol with materials derived from plants. KRICT's Green Carbon Catalysis Research Center succeeded in developing 1,2-pentanediol manufacturing technology, which offers advantages such as a 75% decrease in manufacturing costs, higher yield, and improved reaction selectivity. The center will work with Activon in research on mass manufacturing and high-purity refinement for the purpose of technology commercialization.

For eco-friendly super engineering plastic manufacturing technology, KRICT's Bio-based Chemistry Research Center developed a strong, heat-resistant super bioplastic free of environmental hormones by using a phase transition catalyst to maximize the reactivity of isosorbide.

KRICT and IlKwang Polymer will conduct joint research to further develop the institute's eco-friendly super engineering plastic manufacturing technology.

Ultra-low power dehumidification/ air-conditioning system paves way to success in next-generation dehumidifier market

KRICT completed technology transfer of a hybrid solid desiccant material, essential for dehumidification and cooling, to AEOL Korea. The energy-saving dehumidification/air-conditioning technology developed by a KRICT team comprised of Dr. Chang Jong-San and Dr. Lee U Hwang uses a cylindrical rotor coated with MOF Metal-Organic Framework (MOF): A metal-organic framework formed from coordinate covalent bonds between metal cations and organic carboxylic acid anions desiccant material to remove moisture in air and facilitate air-conditioning. Compared to existing dehumidifiers, the proposed system saves power by more than 40%, and improves dehumidifying performance by at least 50%. KRICT was granted a U.S. patent for the MOF desiccant technology, which was also named by the Ministry of Science and ICT among the top 100 national research achievements of 2019 and the top 10 achievements by government-funded research institutes in 2018. If commercialized, the MOF desiccant rotor will not only replace imported desiccant rotors but also pave the way for KRICT to lead the next-generation dehumidifier market.

Metal-Organic Framework (MOF): A metal-organic framework formed from coordinate covalent bonds between metal cations and organic carboxylic acid anions

Major Research Activities

Annual Report 2019 Korea Research Institute of Chemical Technology

Major Research Activities of Divisions

- 34 Chemical & Process Technology Division
- 44 Advanced Materials Division
- 54 Therapeutics & Biotechnology Division
- 64 Division of Specialty & Bio-based Chemicals Technology
- 70 Chemical Platform Technology Division
- 84 Convergent Research Centers

Development of environment-friendly chemical technologies to deal with climate change and atmospheric environment issues

Chemical & Process Technology Division develops convergent technologies for utilizing carbon containing wastes (CO₂, byproduct gases, biomass wastes) as alternative chemical and fuel feedstocks and improving atmospheric environment.

Chemical&Process TechnologyDivision

Department of Carbon Valorization

Green Carbon Research Center Environment & Sustainable Resources Research Center C1 Gas & Carbon Convergent Research Center

Process Design & Development Research Center

Green Carbon Research Center

Director / Hwang Dong Won / dwhwang@krict.re.kr

· Development of eco-friendly process for green carbon into platform chemicals · Development of eco-friendly process for plastic waste into valuable chemicals · Development of porous nanomaterial and application technology · Development of membrane technology to solve environmental and industrial issues

A highly efficient and robust catalyst for making value-added chemicals from sustainable biomass

The efficient catalytic conversion of renewable resources such as plant biomass into commodity chemicals is one of the alternate ways for production of petroleum based chemicals.

This valorization process usually involves the ring opening reaction of furan-based biomass platform chemicals such as furfural and 5-hydroxymethyl furfural. The current global production of furfural being > 5 million tons/year and it as a potential C5 biomass-based resource can be converted to high value-added alcohols and polyols, especially 1,2-pentanediol (1,2-PeD) via the hydrogenation and subsequent its ring opening reaction. 1,2-PeD has been widely used as a monomer in the production of polyester and an intermediate in the synthesis of fungicides and is also a component of disinfectants and printing inks. Especially in cosmetic industry, 1,2-PeD is a widely used cosmetic raw material with multifunctional properties. It is an excellent moisturizing ingredient for topical preparations. Besides it has very good antimicrobial and solubilizing properties. It also improves the water resistance of sunscreen formulations.

Highly efficient and robust catalyst for furfural to 1,2-PeD in a fixed-bed reactor

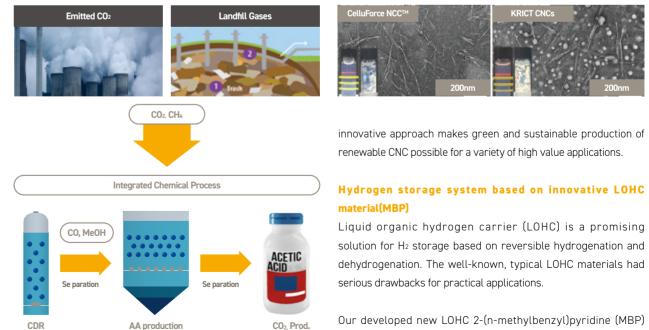
However, 1,2-PeD is conventionally produced from petroleum based n-pentene using mineral acid or formic acid by costly multistep reactions involving selective oxidation of pentene to pentene oxide and subsequent hydrolysis. Therefore, the development of a new synthesis route of 1,2-PeD is great important from the viewpoint of energy-efficient and eco-friendly process, and it can be realized by a single step reaction with biomass-derived chemicals.

Despite the extreme usefulness of furfural as a C5 resource, the transformation of furfural to 1,2-PeD has not been widely studied, and to date, a catalyst system with only novel metal components such as Pt, Pd, Rh, and Ag has been reported as an active catalyst for the selective synthesis of 1,2-PeD in a batch reactor.

Herein, we have developed a highly efficient and robust catalyst with non-noble metal components prepared by co-precipitation method for direct transformation of furfural to 1,2-PeD in a fixedbed reaction system. The catalyst showed 100% conversion of furfural with 89.4% selectivity to 1,2-PeD at 250°C and 40 atm hydrogen pressure. Notably, the catalyst exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of

Technology transfer to ActivON Co., Ltd.

furfural to 1,2-PeD for 100 h without deactivation. Recently, we have contracted with ActivON Co., Ltd. for a technology transfer of this technoloay.

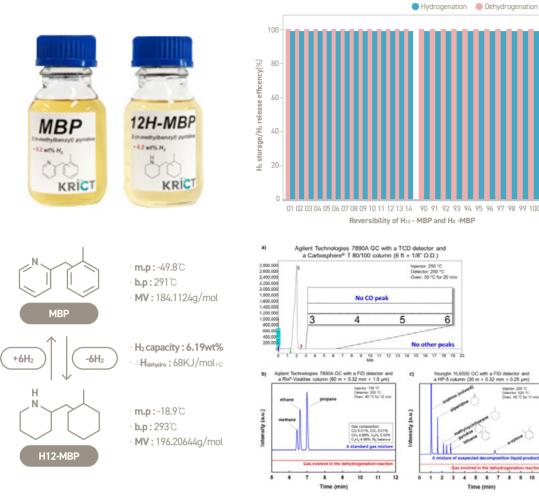

Environment & Sustainable **Resources Research Center**

Head / SHIN JIHOON / jshin@krict.re.kr

· Convergence technology for greenhouse gas resource recovery to respond to climate change · Technology for reducing secondary fine dust sources to improve air quality · Technology for sustainable resources-based high value-added compounds

Syngas and acetic acid production via CO₂ reforming

The pilot-scale CO₂ reforming system has been operating. The system demonstrates CO₂ conversion to syngas via catalytic reforming of CO₂ and natural gas; the CO₂ conversion efficiency reaches 95%, and 20 tons of CO₂ can be utilized in a year using our system. The demo-scale plant of current CO₂ reforming technology will be developed in following years. The ongoing research aims to establish an integrated process for CO₂ reforming, sequential CO conversion, and separation technology to manufacture CO₂ based chemicals(acetic acid, etc.). This project will provide an opportunity to substitute petroleum based chemicals to CO₂ based chemicals, which ultimately contributes to the greenhouse gas reduction.



Facile and eco-friendly extraction of cellulose nanocrystals (CNCs) via electron beam irradiation

An innovative system for extracting cellulose nanocrystals (CNCs) was proposed that uses a two-step process that combines shorttime pretreatment by electron-beam irradiation (EBI) in the solid state and disintegration using high pressure homogenization (HPH) and was compared with the classic production by tedious acid hydrolysis (CelluForce NCCTM).

The resultant CNCs have a uniform width and tunable length rodlike shape, a reasonable crystallinity index, comparable negative surface charge, and improved thermal stability compared with those prepared by the conventional method. Consequently, the presented

with an H₂ storage density of 6.19 wt% satisfied fairly well the

requirements for chemical reversibility in consecutive cycles, chemical and thermal stability, handling properties. Additionally, H12-MBP was fully dehydrogenated at lower temperatures with faster rates by reducing the dehydrogenation enthalpy owing to the presence of N atom, indicating excellent potential for efficient H2 storage.

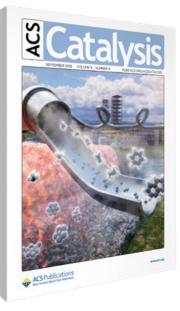
Recently, our result was listed in the 2019 National R&D Excellence Top 100 and Best Performance title in the Energy & Environment area.

World's first identification of electron-transfer mechanism on the COF photocatalyst

We directly observed the ultrafast dynamics of phonon-assisted, PDI-to-porphyrin hole transfer through the splitting of excitons in 2D COFs photocatalyst using femto-second optical spectroscopy and NA-MD simulation.

From this result, we suggested a mechanism of phonon-assisted charge transfer which is highly important for future developments in artificial photosynthesis. The generation of electron on the 2D COF photocatalyst by photo-excitation was measured for the first time in the world. These experimental and theoretical fundamental results will be greatly useful for development of the high-performance photocatalyst with highly improved photocatalytic properties. The result was published in Nature Communications, and selected as the article of Editors' Highlights (2019, 10:1873)

C1 Gas & Carbon **Convergent Research Center**


Head / Lee Yun Jo / yjlee@krict.re.kr

- Membrane separation technologies for recovering greenhouse gases and chemical raw material gases from by-product gases
- Chemical process technologies to produce clean liquid fuels and industrial basic chemicals from C1 gases
- · Catalytic processes for utilization of shale gas and small-sized gas resources Development of technologies to manufacture petroleum residue-based carbon materials

Nonoxidative direct conversion of methane on silica-based iron catalysts: effect of catalytic surface

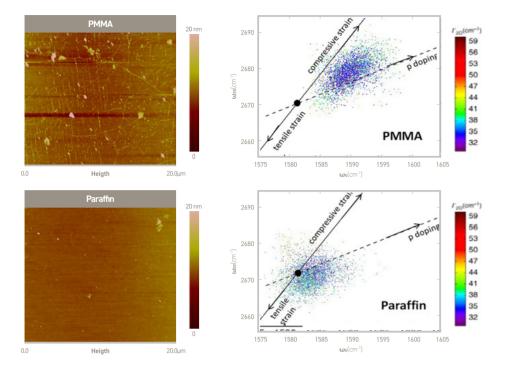
Methane, a principal component of natural gas, is an abundant resource that is mainly utilized as fuel because of its large heat of combustion. However, many methane reserves are located far from the accessible range of industrial and household demands, and transportation is limited owing to liquefaction

difficulties. Therefore, catalytic conversion of methane to liquefied

The iron confined cristobalite catalyst prepared through the melt-fusing method is demonstrated to be effective for the nonoxidative direct conversion of methane. The silica confined Fe species (Fe-Si bond) not only selectively promote the methane activation but also inhibit the coke formation on the silica surface by reducing its defect sites.

· Development of technology to manufacture activated carbon to remove fine dust and hazardous gases

hydrocarbons such as paraffins, olefins, and aromatics is required for its efficient utilization. For a stable methane to olefins, aromatics, and hydrogen (MTOAH) reaction without oxidants, we designed Fe-containing silica catalysts through various preparation methods and tested.


The presence of Fe species in SiO₂ mixtures increased the true and apparent densities of the catalysts during the meltfusing process at 1700 $^\circ\!\!\mathbb{C}$. The Fe@CRS catalyst, prepared from favalite and guartz by the melt-fusing method, maintained highly dispersed Fe carbides at sizes of approximately 7 nm under the reaction conditions (1020°C and 1 bar) for 50 h. The Fe@CRS catalyst was more selective in producing C2 (ethane, ethylene, and acetylene), C3-C5 olefins, and aromatics than pure CRS and other Fe catalysts. At a steady state, the Fe@CRS surface was most suitable for methane conversion, being 2.3 times more efficient than without a catalytic surface.

Characterizations showed that highly dispersed Fe carbide with Fe-Si coordination was formed in the Fe@CRS catalyst, and electronic structure calculations indicated that these confined Fe sites were more favorable for methyl radical formation and a high coke resistance than Fe₃C clusters.

By optimizing reaction parameters, the Fe@RS catalyst exhibited 6.9-5.8% methane conversion and 86.2% C2 selectivity for 100 h with cofeeding of 50% H_2 at 1080 $^\circ\!\!C$.

Smoothing out the wrinkles in graphene

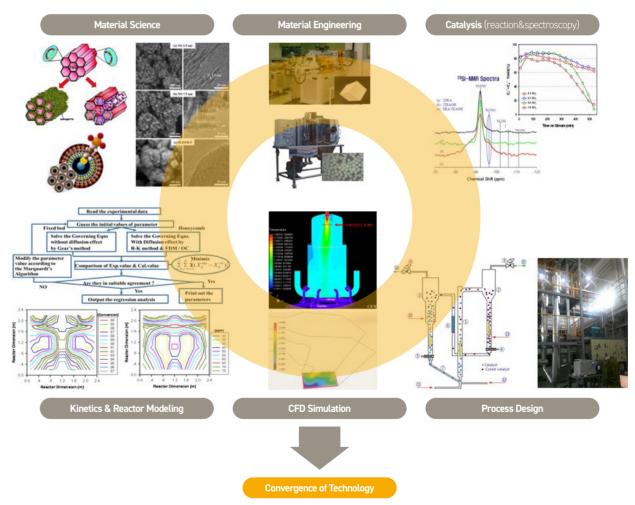
Graphene is an atom-thin material that holds promise for making next- generation electronics. Researchers are exploring

The image at the bottom shows a graphene sheet coated with wax during the substrate-transfer step. This method drastically reduced wrinkles on the graphene's surface compared to a traditional polymer coating (top).

possibilities for using the exotic material in circuits for flexible electronics and quantum computers, and in a variety of other devices.

But removing the fragile material from the substrate it's grown on and transferring it to a new substrate is particularly challenging. Traditional methods encase the graphene in a polymer that protects against breakage but also introduces defects and particles onto graphene's surface. These interrupt electrical flow and stifle performance.

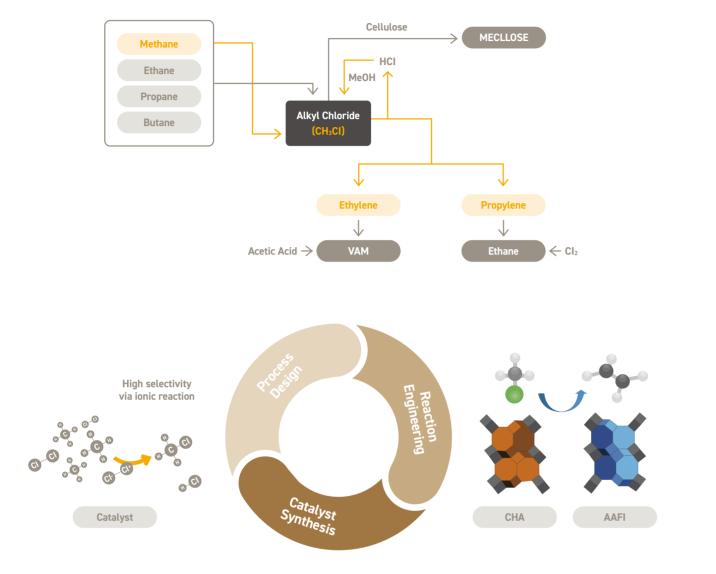
In a paper published in Nature Communications (Nature Communications, 2019, 10, 867), the researchers describe a fabrication technique that applies a wax coating to a graphene


sheet and heats it up. Heat causes the wax to expand, which smooths out the graphene to reduce wrinkles. Moreover, the coating can be washed away without leaving behind much residue. In experiments, the researchers' wax-coated graphene performed four times better than graphene made with a traditional polymerprotecting layer. In this paper, the researchers show microscopic images of a small area of the paraffin-coated and PMMA-coated graphene.

Paraffin-coated graphene is almost fully clear of debris, whereas the PMMA-coated graphene looks heavily damaged, like a scratched window (Figure). Next, the researchers aim to further minimize the wrinkles and contaminants left on the graphene and scaling up the system to larger sheets of graphene.

Process Design & Development **Research Center**

Head / Chae Ho Jeong / hjchae@krict.re.kr


- Development of chemical process technologies for the production of high value-added chemicals from low-carbon resources
- Process system engineering to develop energy conservative olefin production/separation process · Design & development of catalytic process for sustainable hydrogen supply using ammonia-based hydrogen carrier
- · Design & development of environmental catalytic process for the removal of air pollutants in stationary and non-stationary emissions

Catalyst & catalytic process development procedure

New catalytic process development for eco-friendly, energy-efficient chemical industry & energy application

In our research center, we have developed new catalytic process technology for eco-friendly, energy-efficient chemical industry &

Platform technology for the production of valuable chemicals based on natural gas

energy *application*. The new catalytic process development can be completed via the optimization and convergence of all steps such as catalyst design/synthesis/shaping, reaction performance test, kinetic/reaction modeling, and process simulation/design (Figure). This is the role & responsibility of our research center.

We have a various lab & bench scale reaction system. In particular, a circulating fluidized bed (CFB) reactor that can continuously regenerate the catalysts for catalytic reactions with severe deactivation is useful for various reaction processes. Using the CFB system, we did develop the high performance micro-spherical catalysts and processes for the production of light olefins from alcohol. Especially, MTO (methanol to olefins) will be promising as an alternative petrochemical process, For MTO reaction, we developed not only the chabazite(CHA)-structured SAPO-34 catalyst with appropriate shape selectivity and acid properties, but also the micro-spherical catalyst with excellent mechanical strength and optimized shape & size for smooth circulation in CFB process.

Moreover, we could obtain the process operation conditions to maintain high yield of light olefins via appropriate monitoring, controlling, and reaction & regeneration methods.

Development of a high performance catalyst & process for methane conversion reaction

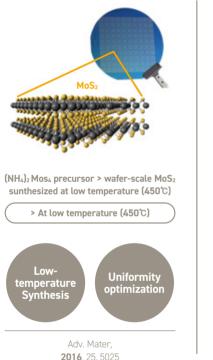
The direct conversion of methane (CH₄) to value-added products under mild conditions with much less energy has been a subject of great importance in economical methane utilization. Despite the large number of disparate approaches for direct CH₄ transformation, none of them has been developed into an industrial process. One of the biggest problems is the very low selectivity to desired product with reasonably high CH₄ conversion.

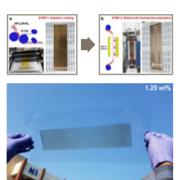
The chlorination of CH_4 is an attractive route to convert CH_4 into more valuable chemicals. The selective formation of methyl chloride (CH_3Cl) is a key process, but it is rather difficult to achieve with high selectivity due to a radical reaction. Catalytic ionic processes can be a solution. In this work, sulfated tin oxide (STO) was employed in the gasphase catalytic chlorination of CH₄. The STO catalyst exhibited high selectivity to CH₃Cl (>96%) even at high CH₄ conversion (Figure).

By applying a suite of physicochemical characterizations, it is shown that the strong Lewis acid sites on STO generated by the interaction of Sn and surface sulfate groups are mainly responsible for the highly selective CH₄ conversion. DFT calculations further revealed that STO surface can activate more Cl₂ molecules in a heterolytic manner, leading to better catalytic performances compared to SnO₂ and sulfated zirconia catalysts. Therefore, the highly selective CH₄ chlorination over STO catalyst has the potential to advance the commercialization of the direct methane transformation process. This work was published in the ACS Catalysis in 2019. Kim & Chae et al. ACS Catalysis 2019, 9, 9398-9410. Development of the cutting-edge technologies for indispensable chemical materials to lead the 4th Industrial Revolution

Advanced Materials Division develops novel smart chemical materials for the IoT device materials, high-stability emerging energy materials, and high-performance materials for the environment and separation processes.

Advanced Materials Division

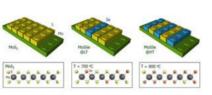

Department of Information & Electronics Materials Thin Film Materials Research Center Advanced Functional Polymers Research Center Interface Materials&Chemical Engineering Research Center

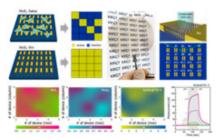

Department of Convergent Energy Materials Energy Materials Research Center

Thin Film Materials Research Center

Head / Lee Sun Sook / sunsukl@krict.re.kr

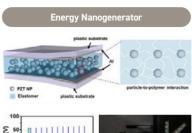
 Development of electronic materials and devices for next-generation semiconductors
 Development of new materials and processing techniques for 2D/3D printed electronics and energy devices



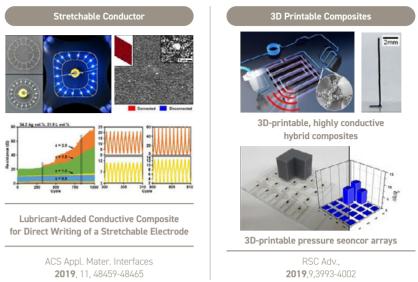


2018, 30, 1705270

Synthesis of 2D MoS_{2(1-X)}se_{2x} ternary alloy and their optoelectronic applications



Atomic level customizing in 4 in. van der Waals semiconductors for photodetectors


Adv. Mater, 2019, 1901405

Large-scale production and atomic-level manipulation of molybdenum disulfide: Prerequisites for two-dimensional semiconductor-based industrial applications

Layered two-dimensional transition metal dichalcogenides (TMDs) have opened new prospects for their potential applications owing to their distinctive physical properties that differ from their bulk counterparts. Despite many encouraging properties of two-dimensional TMDs, a central challenge in the realms of industrial applications based on TMDs materials is to connect (i) the direct synthesis of large-scale TMD materials on plastic substrates for applications in flexible nanophotonic devices, (ii) the mass production of TMD materials with a spatial homogeneity associated with compatibility of the conventional semiconductor manufacturing processes and device-to-device performance variation, and (iii) the atomic-level engineering of TMD materials for realization of high-performance nanophotonic devices. Intriguing properties of TMD materials can be manipulated by altering the combination of heteratoms, bonding configuration, and surface/interface states.

High-Performance Piezoelectric Nanogenerators Based on Chemically-Reinforced Composites

> Energy Environ. Sci., **2018**, 11, 1425-1430

2019, 11, 484

We primarily aim to resolve the three issues through (i) the solution-based large-area compatible, low-temperature synthetic approach using $(NH_{4})_2MOS_4$ single source precursor, (ii) a simple coating of the precursor with subsequent roll-to-roll-based thermal decomposition, and (iii) the synthesis of 2D ternary alloys with customizable bichalcogen atomic ratio *via* atomic-level substitution.

The substitution of heteratoms with relatively different atomic radius and electronegativity is able to create internal strain and bandgap modulation in the alloy system, which dictate diverse physical properties of the 2D alloys with target functionalities. Our synthetic approaches will become the predominant choice of modern nanophotonic applications in the simultaneous pursuit of high photoresponsivity and the realization of photodetector arrays with identical responses from all devices.

Development of composite materials and 3D printing processes technologies for the implementation of untethered IoT devices

In order to realize a hyper-connected society, untethered IoT devices are essential, and for this, it is necessary to develop original materials, high-resolution patterning process, and integrated device application technology.

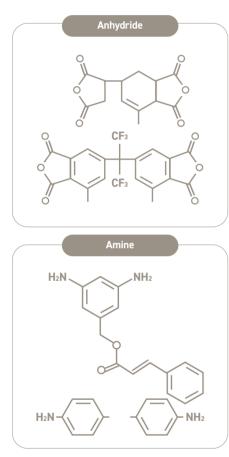
Our PIM (Printable Innovative Materials) group has developed i) energy nanogenerator, ii) stretchable conductor, iii) stretchable substrate, iv) sensor arrays based on the 3D printing process. And in the future, we will use it to implement integrated devices for IoT that can be operated independently by integrating logic operation, wireless communication, self-power, and human body monitoring modules.

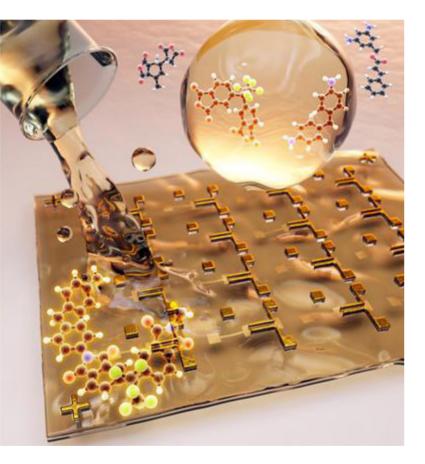
i) Energy nanogenerator : We developed a high-performance piezoelectric nanogenerators (PNGs) device based on a chemically reinforced composite system. By incorporating amine-functionalized lead zirconate titanate (PZT) NPs and a thermoplastic triblock copolymer grafted with maleic anhydride, homogeneous dispersions with well-distributed PZT NPs were obtained without using dispersion enhancers.

ii) Stretchable conductor : Lubricant-added stretchable conductive composite of a polydimethylsiloxane-based elastomer containing silver flakes has reported. The added lubricant minimizes changes in conductivity during stretching and maximizes elastic durability by re-ducing friction.

iii) Stretchable substrate : We developed a RMI process that can adjust the adhesion force, softness, and stretchability of the elastomer. The location and influence of the inhibitor were adjusted by the RMI process in order to modify the mechanical properties of the film.

iv) Sensor arrays : We formulated the 3D-printable composite pastes for the facile fabrication of piezoresistive pressure sensor arrays. It was demonstrated that the pressure sensor array exhibits the sensitivity of 0.31 kPa⁻¹ in a linear trend up to a pressure level of 30 kPa.


Advanced Functional Polymers Research Center


Head / Kim Yong Seok / yongskim@krict.re.kr

· Development of smart polymers for IoT applications

· High performance chemical materials for the next-generation energy and display industry

· Lightweight polymers and composites for transportation industry

Low-temperature solution-processed soluble polyimide gate dielectrics for flexible organic transistors

Aromatic polyimides (PIs) have been widely used in organic field-effect transistors (OFETs) as gate dielectric layers due to their promising features such as chemical resistance, thermal stability, and mechanical flexibility. However, high thermal annealing temperatures for imidization reactions limit the use of inexpensive plastic substrates. In this work, aromatic soluble PI is presented as an alternative to low-temperature processable gate dielectric layers. Low-temperature processability of soluble PI is demonstrated by comparing dielectric and electrical properties with conventional PI at various annealing temperatures. The chemical structure effects of aromatic dianhydride and diamine monomers on device performance are then systematically investigated by evaluating four soluble PIs based on 4,4'-(hexafluoroisopropylidene)diphthalic anhydride

(6FDA) and 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, in which monomeric precursors containing different backbones, side groups, and linkages. The results indicate that 6FDA-based soluble PI is the most promising gate dielectric candidate due to its high field-effect mobility, nearzero threshold electric-field, and excellent electrical stability.

Finally, room-temperature solution-processed OFETs are successfully integrated with ultrathin flexible substrates and they exhibit no significant electrical performance loss after mechanical flexibility tests. This work presents a step forward to the development of soluble PI gate dielectrics for flexible electronic devices with high device performance. It was published in ACS Applied Materials & Interfaces and was introduced in various media.

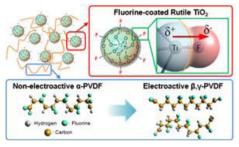
Park & Yoo et al. ACS Applied Materials & Interfaces, Low-Temperature Solution-Processed Soluble Polyimide Gate Dielectrics: From Molecular-Level Design to Electrically Stable and Flexible Organic Transistors

Sulfur based poly(phenylene polysulfide) networks: stretchable, healable, and reprocessable polymers for infrared optical applications

The synthesis and characterization of poly-(phenylene polysulfide) networks (PSNs) with controlled average sulfur ranks, from elemental sulfur (ES) and pdiiodobenzene (DIB), are investigated. The PSN films, prepared via simple hot pressing, are found to possess large extensibility up to around 300% and complete recovery of shape and mechanical properties after deformation, which are attributed to the loosely cross-linked network structures mainly consisting of linear poly(phenylene polysulfide) chains.

The covalent polysulfide linkages in the PSNs also exhibit dynamic behaviors under ultraviolet (UV) or thermal treatment, thus, enabling self-healing and reprocessing of the films when scratched and broken, respectively. Combined with the unique mechanical properties of the PSNs, their high refractive index and excellent infrared (IR) transparency contribute to the preparation of stretchable, healable, and reprocessable IR transmitting materials for potential deformable and stretchable optical applications.

This work was published in ACS Macro Letters and was introduced in various media. Lee et al. ACS Macro Letters, 2019, 8, 912-916


Interface Materials & Chemical **Engineering Research Center**

Head / Sohn Eun-Ho / inseh98@krict.re.kr

· Development of technologies to manufacture and apply environment-friendly fluorine-based polymers · Development of technologies to reduce non-CO2 green-house gas emission and to synthesize alternative materials

· Development of highly efficient photoresponse materials

Fluorinated titania nanoparticle-induced piezoelectric phase transition of PVDF

Piezoelectric phase transition of PVDF

We prepared F-coated rutile titanium dioxide nanoparticles (r-TiO₂ NPs) via simple thermal annealing of titania nanoparticles in poly(vinylidene fluoride) (PVDF), and demonstrated that the F-coated r-TiO₂ NPs doped composite film could efficiently induce the piezoelectric phase transition of the non-electroactive PVDF due to highly electronegative F bonds on the surface of these nanoparticles. In the case of a 2.0 wt.% composite film, 99.20% of the non-electroactive PVDF was transformed into the electroactive phase. Additionally, utilizing the F-coated r-TiO₂ NPs for a piezoelectric device lead to an enhancement of the piezoelectric performance. With the 5.0wt.% composite film, the resulting piezoelectric device exhibited voltage generation of 355 mV, whereas a device with the innate r-TiO₂ NPs exhibited voltage generation of only 137 mV. Furthermore, due to optical inactivity of F-coated r-TiO₂ NPs, the piezoelectric films exhibited high stability under 64 h of photoirradiation at an intensity of 0.1 W/cm². These results indicate that the F-coated r-TiO₂ NPs doped composite films could be useful for various applications, including outdoor energy-harvesting, self-powered wearable devices, and portable sensors.

Development of PVDF manufacturing process

The technology transferred to Chemtros is a process technology for manufacturing PVDF. PVDF is widely used in a variety of industrial fields such as cathode binder for Li-ion battery, solar cell film, and water intake separator membrane, because of its excellent weather resistance and stain resistance, transfer the technology of PVDF manufacturing process.

We developed i) manufacturing technology to produce VDF monomer through pyrolysis; ii) purification of a raw material and iii) polymerization technology that makes VDF monomer to PVDF. In particular, the technology allows manufacture of VDF with a high purity of 98.5% by preventing most of the impurities in the pyrolysis process of producing VDF from the raw material. We announced on March 13, 2019 that it has signed a contract to transfer the technology of PVDF manufacturing process.

KRICT 15th president Kim Sung-Soo(right) and Chemtros CEO Lee Dong-Hoon(left) after signing an agreement on transfer of PVDF manufacturing process

Energy Materials Research Center

Head / Suk Jung Don / jdsuk@krict.re.kr

- · Development of core materials for highly efficient, stable inorganic/ organic hybrid solar cells and technologies to improve stability
- · Development of core materials for highly efficient organic solar cells and technologies to improve stability · Development of core materials for next-generation secondary lithium batteries and technology to improve battery capacity and stability

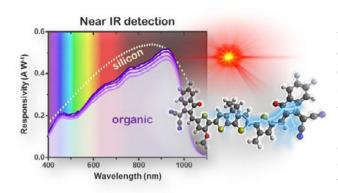
High performance lithium-oxygen battery electrolyte derived from optimum combination of solvent and lithium salt

Due to the ever-growing demand for the high efficiency energy storage devices, developing post Li-ion batteries with high performance are needed urgently. In this regard, diverse energy storage systems including lithium-oxygen, lithium-carbon dioxide, lithium-sulfur and solid-state lithium batteries have been intensively studied as candidates for the next-generation Li-ion

01 A redox shuttle reaction of NO $_{2}$ /NO $_{2}$ molecules with a toroid shape lithium peroxide in the lithium oxygen battery for a possible application in electric vehicles.

02 Macroporous carbon nonofiber decorated with platinum nanorodes as free standing cathodes for Li-O₂ battery

batteries. Specifically, lithium-oxygen battery has been regarded as the most promising high energy density battery because its new electrochemical reaction mechanism results in the extremely high energy density as ~3500 Wh kg⁻¹. To fabricate a sustainable lithiumoxygen battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium


Kang et al. 2019, Langmuir, Volume 35, pp. 8816-8822

nitrate (LiNO₃) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO₃ exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency.

LSV-DEMS study confirms that the TMS-LiNO₃ electrolyte efficiently produces NO_2^- , which initiates a redox shuttle reaction. Interestingly, this NO₂⁻/NO₂ redox reaction derived from the LiNO₃ salt is not very effective in solvents other than TMS. Compared with other common Li-O₂ solvents. TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO_2^{-}/NO_2 redox reaction, which results in a high-performance Li-O2 battery. (Adv. Sci. 2017, 4, 1700235)

Side chain engineering of non-fullerene acceptors for nearinfrared organic photodetectors and photovoltaics

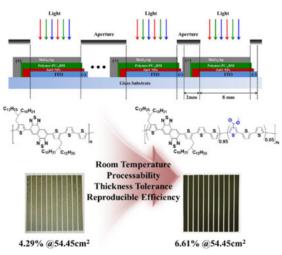
Narrow bandgap n-type molecular semiconductors are relevant as key materials components for the fabrication near-infrared organic solar cells (OSCs) and organic photodetectors (OPDs). We thus designed nearly isostructural non-fullerene electron acceptors, except for the choice of solubilizing units, which absorb from 600 nm to 1100 nm. Specific molecules include CTIC-4F, CO1-4F and COTIC-4F, whose optical bandgaps are 1.3 eV, 1.2 eV and 1.1 eV, respectively. Modulation of intramolecular charge transfer characteristics was achieved by replacing alkoxy

groups with alkyl groups on thiophene spacers that connect an electron rich cyclopentadithiophene core to peripheral electron poor fragments. OSCs incorporating CTIC-4F and CO1-4F with PTB7-Th achieve power conversion efficiencies of over 10% with short-circuit current densities as high as ~25 mA·cm⁻². More importantly, efficient OPDs were demonstrated with responsivities of 0.51 A W $^{\mbox{--}1}$ at 830 nm and 0.52 A W $^{\mbox{--}1}$ at 920 nm for CTIC-4F and C01-4F, respectively. Notably, C01-4F is one of the few electron acceptor materials featuring narrow bandgap ($\langle 1.3 \text{ eV} \rangle$) and high photoresponse in the NIR portion of the spectrum. The side-chain design strategy is likely to prove general and may be applied to fine tune the properties of other NFA conjugated frameworks. These findings high light outstanding opportunities to tune further molecular design so that OPDs may ultimately compete with their silicon counterparts. This work was published in ACS Energy Letter in 2019.

Freely shapable and 3D porous carbon nanotube foam using rapid solvent evaporation method for flexible thermoelectric power generator

A rapid solvent evaporation method based on the triple point of a processing solvent is presented to prepare carbon nanotube (CNT) foam with a porous structure for thermoelectric (TE) power generators. The rapid solvent evaporation process allows

the preparation of CNT foam with various sizes and shapes. The obtained highly porous CNT foam with porosity exceeding 90% exhibits a low thermal conductivity of 0.17 $W \cdot m^{-1} \cdot K^{-1}$ with increased phonon scattering, which is 100 times lower than that of a CNT film with a densely packed network. The aforementioned structural and thermal properties



of the CNT foam are advantageous NIR organic photodetector

to develop a sufficient temperature gradient between the hot and cold parts to enhance TE output characteristics. To improve the electrical conductivity and Seebeck coefficient further. p- and n-molecular dopants are easily introduced into the CNT foam, and he optimized condition is investigated based on the TE properties. Finally, optimized p- and n-doped CNT foams are used to fabricate a vertical and flexible TE power generator with a combination of series and parallel mixed circuits.

The maximum output power and output power per weight of the TE generator reach 1.5 μ W and 82 μ W g⁻¹, respectively, at a temperature difference of 13.9 K. Our approach demonstrates that the use of bulk and porous CNT foam allows the fabrication of a vertical and flexible TE generator with various shapes with high TE output power. This work was published in Advanced Energy Materials in 2019.

Room temperature processed highly efficient large-area polymer solar cells

Large-Area PSCs

The room temperature (RT) processability of the photoactive layers in polymer solar cells (PSCs) from halogen-free solvent along with their highly reproducible power conversion efficiencies (PCEs) and intrinsic thickness tolerance are extremely desirable for the large-area roll-to-roll (R2R) production. However, most of the photoactive materials in PSCs require elevated processing temperatures due to their strong aggregation, which are unfavorable for the industrial R2R manufacturing of PSCs. These limiting factors for the commercialization of PSCs are alleviated by synthesizing random

terpolymers with components of (2-decyltetradecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole and bithiophene substituted with methyl thiophene-3-carboxylate (MTC). In contrast to the temperature-dependent PNTz4T polymer, the resulting random terpolymers (PNTz4T-MTC) show better solubility, slightly reduced crystallinity and aggregation, and weaker intermolecular interaction, thus enabling PNTz4T-MTC to be processed at RT from a halogen-free solvent. Particularly, the PNTz4T-5MTC-based photoactive layer exhibits an excellent PCE of 9.66%, which is among the highest reported PCEs for RT and ecofriendly halogen-free solvent processed fullerene-based PSCs. and a thickness tolerance with a PCE exceeding 8% from 100 to 520 nm. Finally, large-area modules fabricated with the PNTz4T and PNTz4T-5MTC polymer have shown 4.29% and 6.61% PCE respectively, with an area as high as 54.45 cm² in air. Our finding provides insight into random terpolymers and provides a guideline for those involved in the further design of highly efficient and stable polymer donors processable at RT.

Design and development of ion exchange membranes and membrane-electrode assembly (MEA) for electrochemical energy conversion devices

Ion-exchange membranes are semi-permeable membranes that transports certain dissolved ions, while blocking other ions or neutral molecules. Important examples of ion-exchange membranes include the proton-exchange membranes (PEMs), that transport $\mathsf{H}^{\scriptscriptstyle +}$ cations, and the anion exchange membranes (AEMs) to transport OH⁻ anions. We have investigated various hydrocarbon-based PEMs and AEMs, which are PBI-based and poly(*p*-phenylene)-based ionomers, with high electrochemical performance, chemical stability, and low gas permeability for fuel cell, vanadium radox flow battery, and water electrolysis

53

02

01 Ion exchange membrane technology applications

02 Commercial anion conducting binder based on KRICT AEM technology

applications. The electrochemical energy conversion devices using AEMs, which could efficiently convert chemical energy to electrical energy or electrical energy to chemical energy, have been considered as attractive technology with the potential advantages of utilizing low-cost catalysts based on non-precious metals and less expensive metal hardware as well as superior conversion reactions at electrodes under alkaline environment conditions. Typically, among various components, which have an effect on the performance and durability of device, solid electrolyte used as anion conducting membranes (AEMs) and anion conducting binders (AEBs) are regarded as core components to play a major role. Recently, although several kind of AEMs and AEBs, such as Fumasep®, AemionTM, Sustainion®, and Xion[®], are released for commercial use, there are still no reliable ACMs to be utilized under harsh operating conditions. Therefore, development of ACMs with outstanding performance and chemical stability is still remained as a major concern.

Recently, we developed anion conducting ionomer material (QPC-TMA) consisting of ether-free backbone incorporating trimethylammonium-terminated flexible alkyl side chain for fuel cell and water electrolysis. Moreover, in spite of moderate IEC value as low as 2.0 meg g⁻¹, state-of-the-art performances of water electrolysis cell as well as excellent performances of fuel cell, where QPC-TMA is introduced as membrane and electrode binder, are released. The performance of QPC-TMAbased water electrolysis (3.5 A cm⁻² at 1.9 V) is higher than that of commercial PEM water electolysis (2.2 A cm⁻² at 1.9 V). We contracted technology transfer contract with SDB corporation in 2019, and SDB corporation began commercial sale of the AEMs as electrode binder (AnioMer CB-X) in 2020.

Development of drug discovery and biotechnologies to lead better life

Therapeutics & Biotechnology Division secures new drug pipelines for healthy life and develops technologies to respond infectious diseases in society. The division also establishes new drug and diagnosis infrastructure for innovative medical services and seeks eco-friendly new materials to protect environment.

Therapeutics & Biotechnology Division

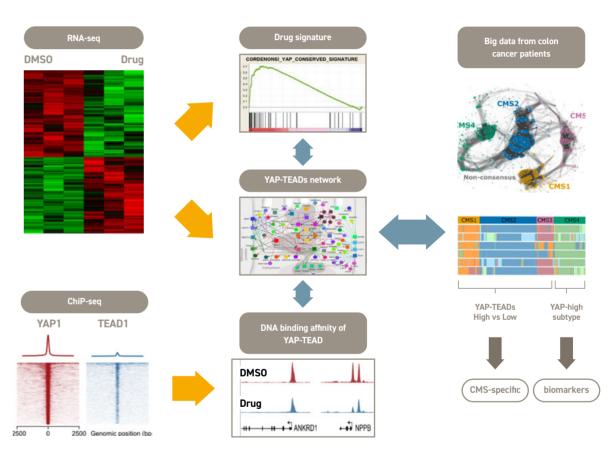
Department of Drug Discovery Data Convergence Drug Research Center Drug Discovery Platform Research Center **Department of Infectious Diseases Research** Infectious Diseases Therapeutic Research Center

Eco-Friendly New Materials Research Center

Data Convergence Drug **Research Center**

Head / Lim Hwan Jung / indium@krict.re.kr

- · Development of deep neural network algorithms for predicting activity, toxicity, and druglikeness based on molecular structures
- · Development of novel drug targets and validation solutions through drug-target interaction(DTI) bigdata analysis
- · Development of new drug candidates for existing medical unmet needs in cancers and immune related diseases
- · Development of new modalities for drug discovery using the chemically induced proximity of proteins such as proteolysis targeting chimera(PROTAC) and molecular glue


P MST 1/2 LATS 1/2 P YAP/TAZ P P YAP/TAZ YAP/TAZ 14-3-3 Proteasome P Cytoplasmic destruction retention Antiapoptosis Nucleus Proliferation Dep FGF Birc5-2 YAP/TAZ Gli2 CTGF TEAD 1/4 AREG © 2013 American Association for Cancer Research /#R **CCR** Reviews

Overview of the Hippo pathway (Clin. Cancer. Res. 2014, 20, 557.)

Development of YAP-TEAD inhibitors for a novel anti-cancer treatment

The Hippo pathway, highly conserved signaling pathway across higher-order vertebrates, is known as a key regulator of organ size and tissue homeostasis. The pathway is mainly consisted of kinase (MST1/2 & LATS1/2) and transcriptional modules (YAP/ TAZ and TEAD1-4). Deregulation of the Hippo pathway would be related to oncogenesis and resistance of current anti-cancer chemo-therapies through various mechanisms. Moreover, its transcriptional coactivators, Yes-associated protein (YAP) and

PDZ-binding motif (TAZ), are highly amplified in many human cancers. Multiple groups are under investigations in order to develop a novel anti-cancer drug that can restore the Hippo pathway's tumor suppression ability. Among druggable biological targets in the pathway, the binding of YAP/TAZ with TEA DNAbinding proteins (TEADs) is known as one of the promising anticancer targets. Initiated from biological studies related to the pathway and the molecular target by Dr. Heicheul Chung's group in Gangnam Severance hospital, a drug-like hit was identified by professor Kyoung Tai No in Bioinformatics and Molecular Design Research Center (BMDRC) in Yonsei university. We have

and STD-NMR (Daegu-Gyeongbuk Medical Innovation Foundation, Dr. Eunmi Hong), and X-ray structure of hTEAD1 were obtained (Korea Research Institute of Bioscience and Biotechnology, Dr. Bon-su Koo).

4. The structures of major metabolites of a lead compound were analyzed by LC/MS/MS, and the proposed structures were confirmed by independent syntheses (KRICT, Dr. Sunjoo Ahn) 5. Selective TEAD-dependent transcriptional modulation through lead

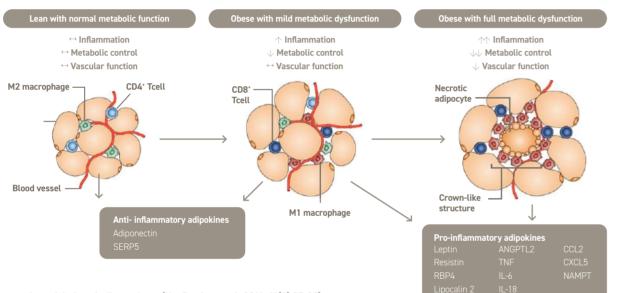
been developing small-molecular inhibitors for selectively and efficiently inhibit YAP/TAZ-TEAD interaction.

The key findings and major achievements in our journey are :

1. Drug-like hits were identified by fragment molecular orbital (FMO) calculations and docking studies

2. Developed small-molecular lead compounds showed solid structure-activity-relationship (SAR) and promising anti-cancer activities in animal models with almost no side-effects (KRICT. Dr. Hwan Jung Lim and Dr. Seong Jun Park)

3. Selective binding of an inhibitor with TEAD protein was confirmed through various biochemical analyses such as SPR, ITC,

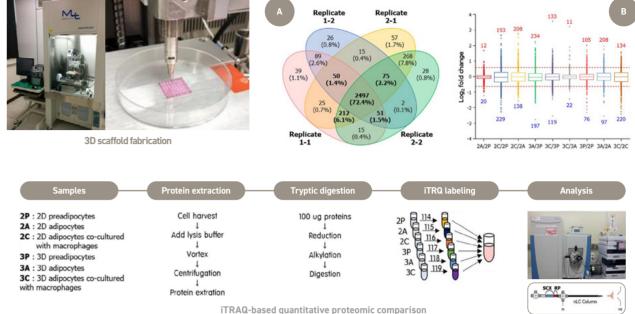

Multi-omics data analyses for searching potential biomarkers of CRC patients

- compounds was confirmed by RNA sequencing (KRICT, Dr. Byung Ho Lim). Using these omics data, searching potential biomarkers of colon cancer patients for YAP/TAZ-TEAD inhibitors is ongoing.
- In 2019, the results were licensed-out to Samjin Pharm. (CEO, Mr. Hong Soon Chang) and also funded by National Research Foundation in Korea (NRF-2019M3E5D5066177) for further development. Currently, the development of an orally available preclinical candidate is underway.

Drug Discovery Platform Research Center

Head / Kim Ki Young / kykim@krict.re.kr

· Development of drug discovery platform technologies based on 3D cells/organoids and zebrafishes · Development on treatment of customized rare diseases connecting clinical medicine · Establishment of drug screening system using animals with various diseases · Development of technologies to increase biological efficiency of innovative target candidate materials


Phenotypic modulation of adipose tissue (Nat Rev Immunol, 2011, 11(2):85-97)

Development of in vitro three-dimensional co-culture system for metabolic syndrome therapeutic agents

There are many obstacles to overcome in the development of new drugs for metabolic diseases, including efficacy and toxicity problems in later stages of drug development. To overcome these problems and predict efficacy and toxicity in early stages, we constructed a new model of insulin resistance in terms of communication between 3T3-L1 adipocytes and RAW264.7 macrophages by three-dimensional (3D) culture.

Metabolic syndrome is a combination of mutually related risk factors for diabetes. These factors are typically abdominal obesity and insulin resistance. Many studies have reported that abdominal obesity is the form of obesity most strongly associated with metabolic syndrome. However, many other researchers have placed more priority on insulin resistance

rather than obesity in pathogenesis. Insulin resistance generally increases with increasing body fat mass, consequently leading to abdominal obesity. Obesity contributes to hypertension, highserum cholesterol, less high-density lipoprotein cholesterol, and hyperglycaemia. It is widely considered that a state of chronic low-grade inflammation contributes to insulin resistance. White adipose tissue (WAT) is the anatomical term for loose connective tissue composed of adipocytes. WAT contains several cell types such as fibroblasts, macrophages and endothelial cells in addition to adipocytes. Adipose tissue is associated with type 2 diabetes mellitus, obesity, hypertension, and cardiovascular disease. The traditional role of adipose tissue is energy storage and release of fatty acids when energy is required. WAT is now recognized as an endocrine organ that secretes hormones and cytokines. It is associated with energy balance, immune response and

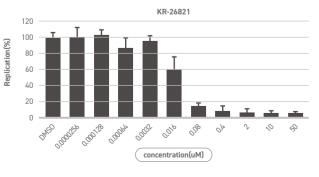
cardiovascular disease and is involved in a range of functions beyond simple fat storage. The cell types involved in inflammatory response in obesity are not vet fully delineated. Recently, attention has been paid to adipose tissue macrophages as a mediator of inflammatory responses in adipose tissue. Inflammatory cytokines are associated with increased numbers of adipose tissue macrophages in obese and diabetic patients. An increase in macrophage recruitment related to fat mass has been accepted as scientific dogma. Macrophages generate inflammatory cytokines and induce nitric oxide synthesis, which may impair insulinstimulated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) activation and, directly or indirectly, play a role in obesityrelated insulin resistance in adipose tissue.

Thus, in this study, results focused on the functional resemblance between 3D co-culture of adipocytes and macrophages and adipose tissue in diabetic mice. The 3D mono-culture preadipocytes showed good cell viability and induced cell differentiation to adipocytes, without cell confluence or cell-cell contact and interaction. The 3D co-cultured preadipocytes with RAW264.7 macrophages induced greater insulin resistance than two-dimensional and 3D mono-cultured adipocytes. Additionally, we demonstrated that 3D co-culture model had functional metabolic similarity to adipose tissue in diabetic mice. We utilized this 3D co-culture system to screen PPARy antagonists that might have potential as therapeutic agents for diabetes as demonstrated by an in vivo assay.

Furthermore, we performed global guantitative proteomic

profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/ MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and guantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHa, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders. Therefore, this in vitro 3D co-culture system could serve as a next-generation platform to accelerate the development of therapeutics for metabolic diseases. This study was jointly studied by KRICT and KRISS and published in the "Diabetes, Obesity and Metabolism" and "Scientific Reports" in 2019.

Infectious Diseases Therapeutic Research Center

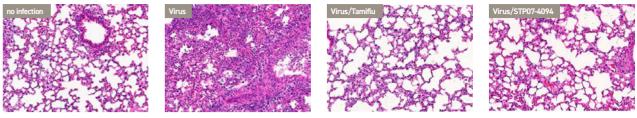

Head / Yun Chang Soo / csyun@krict.re.kr

- \cdot Development of new antivirals based on small-molecules against highly pathogenic viruses
- Drug target discovery for the development of first-in-class innovative antivirals
- · Discovery of hit-, lead-, and candidate-compounds according to the development stage of new antivirals
- · Development of antibiotics for multi-drug resistant bacterial infections
- · Development of the small-molecule antibiotic pipelines for Gram-negative pathogens
- · Novel target discovery and validation for developing new antibiotics against superbugs

Anti-rhinoviral drug candidate

The human rhinovirus (hRV), a member of the Enterovirus genus in the Picornaviradae family, is a persistent threat to public health. It is known to cause ~60% of upper respiratory tract symptoms such as the common cold. Moreover, recent studies conducted with improved detection methods suggest that hRV infections can aggravate inflammatory illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and otitis media. Analyses of viral specimens from pediatric patients with asthma exacerbations identified a high prevalence of hRV.

More than 160 hRV serotypes have been identified and grouped into three species, hRV-A, B, and C, that are each divided into various subspecies. Like other picornaviruses, hRV has a positivesense, single-stranded RNA genome packaged in an icosahedral capsid composed of four viral proteins (VP1 to VP4). Several drug candidates have been developed to combat hRV infections. However, because of insufficient efficacies or side effects observed during their clinical studies, none of these substances has been developed into drugs approved for the treatment of these viral infections. Therefore, a new small-molecule inhibitor


EV71 replicon test of KR-26821

that shows broad-spectrum inhibition of the replication of these enteroviruses is highly desired. KRICT developed a series of highly potent and broad-spectrum inhibitors of hRV replication. A representative analog, KR-26821, is a low-molecular compound and shows ~nM concentrations activity in vitro antiviral tests with >1,000 selectivities (CC50/EC50). To identify the viral target, EV71 replicon test was run and 23 nM of EC50 was obtained which suggests that KR-26821 is not an inhibitor of capsid binding. Given the broad-spectrum anti-rhinovirus activity, this class of molecules has the potential to be used for prophylaxis and treatment of rhinovirus induced exacerbations of COPD and asthma.

Anti-influenza viral drug candidate

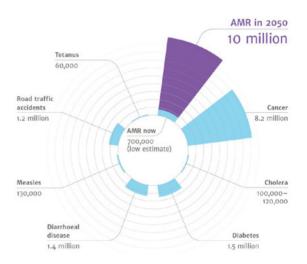
Influenza virus belonging to the family of Orthomyxoviridae is one of human respiratory pathogens that causes seasonal or zoonotic epidemics and unpredictable global pandemics. Its genome is composed of eight single-stranded negative-strand RNA segments.

Currently, there are three classes of antivirals that tharget influenza viral proteins NA, M2 and PA, approved by the U.S. Food and Drug Administration. Although vaccines and antiviral drugs are available to prevent or treat influenza viral infection, it still causes 300,000 to 500,000 deaths worldwide every year. Most of all, the emergency of drug-resistant viruses harboring mutations in the target proteins has been a major concern. Through a collaboration with ST Pharm Co Ltd., a company providing manufacturing service for active pharmaceutical ingredient (API), KRICT developed a nucleoside analogue, STP07-4094, that inhibits viral RNA-dependent RNA polymerase activity. As a pro-drug, its active form has been evaluated to have antiviral activity against

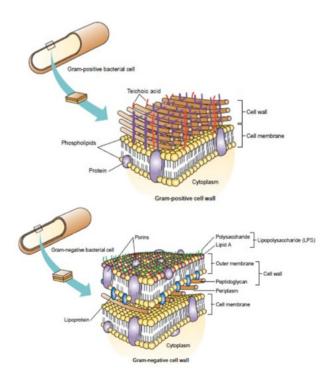
Lung histopathology. Normalization of viral infection-mediated lung inflammation by STP07-4094.

influenza A (including H1N1 and H3N2) as well as B viruses with 50% effective concentrations between 1 to 10 μ M. Using a mouse model susceptible to influenza A virus, we proved that STP07-4094 alleviates viral infection-mediated body weight decreases as well as lung inflammation, resulting in increases in mouse survival rates.

The compound is on the preclinical studies to investigate its pharmacokinetic properties or to analyze its mebatolites. It is expected that like favipiravir, an influenza viral RdRp inhibitor, STP07-4094 could be applicable to treat Ebola or coronaviral infection.


Development of drugs for multidrug-resistant Gram-negative bacterial infections

Global antibiotic resistance has reached critically urgent levels, as expected in the AMR (antimicrobial resistance) reports*, warning that it could cause 10 million annual deaths by 2050 in the absence of actions to tackle AMR.


WHO also drew up a list of antibiotic-resistant "priority pathogens" in 2017 - a catalogue of 12 families of bacteria with the highest priority needs for new antibiotics. The list particularly highlights multidrug-resistant Gram-negative bacterial pathogens such as Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, posing the greatest threat to human health.

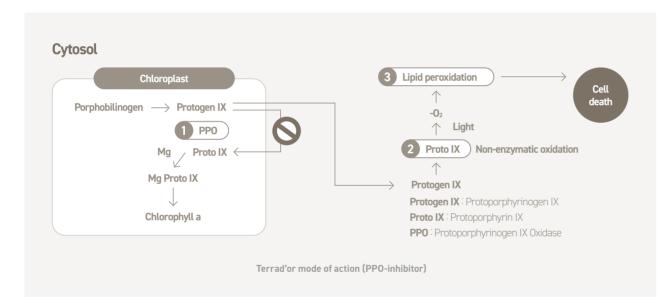
Although there is an urgent medical need for novel Gramnegative agents, a protective barrier, the outer membrane has been a significant challenge to discover a new antibacterial drug. In addition to promiscuous efflux pumps, the additional cell membrane of Gram-negative bacteria incorporating lipopolysaccharide (LPS) prevents small molecules from penetrating the cellular envelope (Figure).

In accordance with the danger of AMR especially for Gram-

negative pathogens and the difficulties to discover a new agents to treat them, now we target to develop efficient antibiotics based on small molecules against Gram-negative bacterial infections.

Gram-positive (left) and Gram-negative (right) cell wall structures

^{*} J. O'Neill, Tackling Drug-Resistant Infections globally: final report and recommendations. The Review on Antimitrobial Resistance. 2016.


Eco-Friendly New Materials Research Center

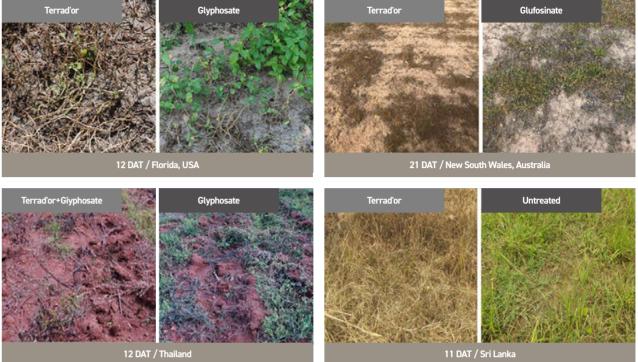
Head / Lee III Young / iylee@krict.re.kr

- · Development of new herbicides to control resistant weeds
- · Development of new insecticides with MoA
- · Development of bio- and synthetic fungicides

· Establishment of pathological testing technologies for development of resistant cultivars and implementation of relevant support projects

. Development of new materials to replace environmentally hazardous materials

Launching of Terrad'or Gold and Terrad'or ME in Korea and Sri Lanka (2019)


Terrad'or(ISO name : tiafencil) is a noble, post-emergence, contact, non-selective herbicide. It was discovered and developed by a joint research program of KRICT and FarmHannong. The technology including new active ingredient and metabolite analysis at the KRICT was transferred to FarmHannong in 2015.

It is one of the most powerful PPO(Protoporphyinogen IX oxidase)-inhibiting herbicide to control both broad-leaf and grass weeds simultaneously with excellent toxicological profiles. Terrad'or inhibits chlorophyll formation in weeds and generates active oxygen, which destroys cells and shows quick herbicidal

effects with a necrotic symptom, 2~3 days after application. Terrad'or drives burndown activity faster than Glyphosate and Glufosinate and provides broad spectrum by variable usage rate(25~250 g ai/ha). Above all, it features the excellent control against Glyphosate-resistant weeds such as Amaranthus spp, ragweed(Ambrosia spp), hophombeam copperleaf(Acalyphaostr yifolia), dayflower(Commelina communis), etc.

In recognition of the technological excellence, the discovery of the "tiafenacil" was selected as one of the 100 Best National R&D Excellence in 2016.

The Terrad'or Plus and Gold were successfully launched in domestic market in 2018 and 2019, respectively. On April 2019,

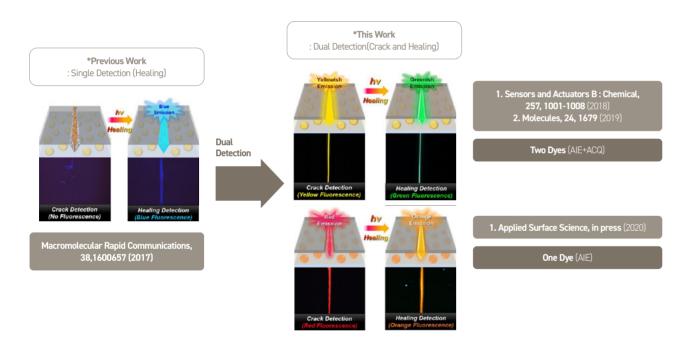
Terrad'or global field test(vs. Glyphosate)

Terrad'or Plus, Gold, and Me based on the tiafenacil

Terrad'or has taken its first step into the overseas market; submitted to the major target countries such as US, Canada, South America(Brazil and Argentina), and Australia to tap into the Terrad'or ME was launched in Colombo, Sri Lanka, with local partner "Lankem" that is a leading agro-company in Sri Lanka. world's non-selective herbicide market. In addition, the registration dossier of Terrad'or was already

Development of future convergent technologies to create new chemical industries and increase added value of chemical industries

Division of Specialty & Bio-based Chemicals Technology develops sustainable environment-friendly material technologies for future vehicles as well as novel-function high-value-added fine chemical material technologies.

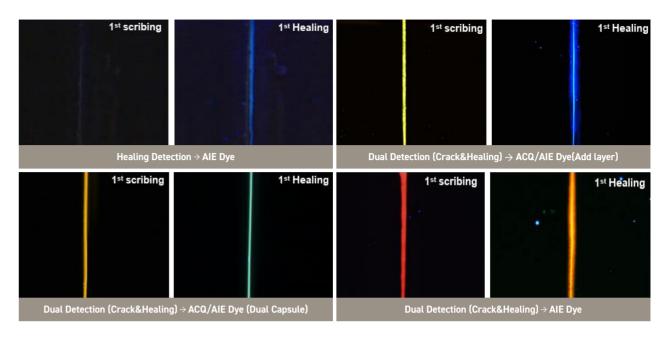

Division of Specialty& Bio-based Chemicals Technology

Department of Specialty Chemicals Research Center for Advanced Specialty Chemicals **Department of Bio-based Chemicals** Research Center for Bio-based Chemistry

Research Center for Advanced Specialty Chemicals

Director / SEO BONG KUK / bksea@krict.re.kr

- · Research on smart coatings technology
- · Research on stimuli-responsive polymer material chameleon technology
- · Research on advanced adhesives technology
- · Technical support for analysis and verification of pilot production


Schematic diagram of self-healing detection

Monitoring of cracking and healing in self-healing/self-report coatings using microcapsules loaded with AIE dyes

A self-healing coating technologies may potentially be useful for autonomously repairing surface damage caused by an outside impact, thereby extending the lifetimes of substrate materials in a variety of fields.

The self-healing of cracked regions formed under an external impact involves surface recovery solely at the cracked position.

It is important to determine when surface cracks have been completely healing, because the self-healing capacity tends to deteriorate over time, and rehealed damaged surfaces may not restore the full coating integrity. Thus, detecting the degree of self-healing, the presence of cracks/healing, and the presence of healed positions is important for guiding spotrepair processes. Crack/healing sensing using fluorescence effects is readily achieved using noncontact, highly sensitive, and visualization-based detection methods.

Fluorescent Detection of Self-Healing

An extrinsic self-healing coating system containing tested for changes in its fluorescence color and fluorescence tetraphenylethylene (TPE) in microcapsules was monitored by intensity following a solution/solid-state phase change. These measuring aggregation-induced emission (AIE). This results unique AIE-fluorophore-embedded microcapsules were suggested that this formulation might be useful as a self-healing successfully synthesized, and a crack/healing dual-reporting material and as an indicator of the self-healing process due self-healing system with a top coating and an epoxy matrix resin to the dramatic change in fluorescence during photocuring. was prepared. The prepared self-healing coating system was To examine the ability of the healing agent to repair damage indicated by optical microscopy (OM) and scanning electron to a coating, a self-healing coating containing embedded microscopy (SEM) after a scratch was created with a razor. microcapsules was scribed with a razor. The self-healing coatings showed and the fluorescence color changed from orange to green or red to orange as healing As the healing process proceeded, blue light fluorescence occurred via photocuring.

emission was observed at the scribed regions. This observation suggested that self-healing could be monitored using the AIE fluorescence. To our knowledge, no previous report has described the use of AIE fluorescence in self-healing applications.

As a follow up studies as mentioned, a crack and crack healing were both detectable with a microcapsule-based dualreporting self-healing coating system developed using a single aggregation-induced emission (AIE) fluorophore. This selected and synthesized two type (AIE/ACQ) or single AIE dye was

The fluorescence intensity also dramatically increased at the healing region soon after the scratch was inflicted. The fluorescence color changed according to the crack/healing process, and the fluorescence intensity also dramatically increased.

This work was published in the form of Macromolecular Rapid Communications, 38, 1600657 (2017), Applied Surface Science, 434, 1327-1335 (2018), Sensors and Actuators B: Chemical, 257, 1001-1008 (2018), Molecules, 24, 1679 (2019), Applied Surface Science, in press.

Research Center for Bio-based Chemicals

Director / Hwang Sung Yeon / crew75@krict.re.kr

Development of technology to engineer plastics for environment-friendly vehicles
 Research on industrial biotechnologies to manufacture bio-based fine chemical materials
 Development of sustainable technology for functional materials using nonedible biomass

Transparent bio-polycarbonate film

Sustainable tough engineering thermoplastics from biorenewable monomer

We developed sustainable tough engineering thermoplastics including bio-polycarbonates and bio-poly(aryl ether) s. Bisphenol-A(BPA) is a petrochemical substance and an environmental hormone that causes endocrine disruptions and metabolic complications. BPA is mostly used in polycarbonates and polysulfones. The usage of this substance is prohibited in nursing bottles and cosmetics in Korea as well as worldwide. It is also used in receipt papers and the coating materials of canned foods.

For above reasons, bio-polycarbonate has received attention as an alternative to BPA-based polycarbonate. However, it is difficult to simultaneously satisfy both economic feasibility and high mechanical performances of biomass-derived plastics. we overcame it with the combination of biorenewable isosorbide and nanocellulose, and succeeded in producing biopolycarbonate that surpasses the petroleum polycarbonate. Isosorbide, an eco-friendly compound derived from glucose, not only improves the mechanical properties of the incorporated polymer, but also possesses good optical and UV-resistive properties due to its unique molecular structure.

We applied the principle of "like dissolves like" where similar compounds mix together better. Isosorbide well mixed together with nanocellulose as a bio-derived reinforcing agent because both substances are hydrophilic and a similar structure. Then, the polymerization process of the nanocomposite plastic was carried out. The well dispersed nanocellulose acted like a metal rebar in the concrete and thus maximized the strength of the bioplastic. We applied the principle of "like dissolves like" where similar a component of electronic products, problems such as material expansion due to temperature rise can be minimized. These research achievements entitled 1) "Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals" was featured on the front cover of Green Chemistry of the Royal

The developed bio-polycarbonate exhibited a tensile strength of 93MPa. This is the highest measurement to date amongst all existing petroleum and bio-polycarbonate. The tensile strength of petroleum polycarbonate ranges from 55~75MPa while the tensile strength of the bio-polycarbonate of the Japanese firm is 64~79MPa.

The light transmittance, which represents the transparency of the plastic, was measured as 93%. This result is very superior to commercially available petroleum polycarbonate, which was due to the suppressed crystallinity through the dispersed nanocellulose. This is an amazing because most nanocomposites have a reduced transparency because nonuniform aggregates scatter light. In addition, there is no risk of discoloration even after extended exposure to ultraviolet rays since there are no benzene ring in bio-polycarbonate, unlike petroleum polycarbonate.

Consequently, bio-polycarbonate can be used as an industrial material for applications including automobile sunroofs, headlights, transparent highway noise barriers, and exteriors of electronics such as smartphones. The material is thus expected to be a viable alternative to the existing polycarbonate.

In addition, we solved the problem of low reactivity of isosorbide by using a phase transfer catalyst to prepare biomass-derived super engineering plastics, poly(aryl ether)s. As a result, the strength per unit weight of super bioplastics was 69 KN·m/ kg, higher than steel (63KN·m/kg) at the same weight. It is the strongest bioplastics ever published in academia. The tensile strength was 80MPa. This is higher than most petroleum plastics. It also has excellent heat resistance to withstand high temperatures. It did not expand or deform at temperatures as high as 300°C in vacuum and withstands 212°C under oxygen and physical stress conditions. In fact, in the chemical process of making OLED transparent substrates, it has surpassed the high temperature of over 300°C. The coefficient of thermal expansion is also about 25 ppm/°C, which is at least 2 to 10 times better than petroleum plastics. This means that when used as a component of electronic products, problems such as material expansion due to temperature rise can be minimized.

Transparent bio-super engineering plastics

Society of Chemistry, which is the highest authority in the field of green chemistry, and simultaneously selected as a Hot Article of 2019; 2) "Sustainable and recyclable super engineering thermoplastic from biorenewable monomer" was featured on Editors' Highlights of Nature Communications published in June 2019.

Development of chemical platform technologies in response to social and industrial demand

Chemical Platform Technology Division develops a data-driven chemical research platform, drug information platform, technology platform for chemical materials industry, chemical analysis platform and advances chemical safety technology.

Chemical Platform Technology Division

Chemical Data-Driven Research Center Drug Information Platform Center Chemical Safety Research Center

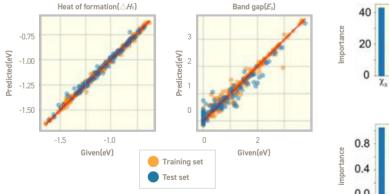
Chemical Materials Solutions Center

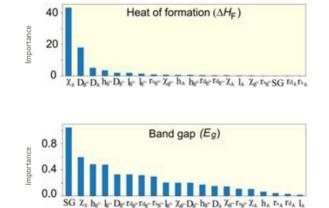
Chemical Analysis Center

Reliability Assessment Center for Chemical Materials

Chemical Data-Driven Research Center


General Director / Chang Hyunju / hjchang@krict.re.kr


Development of research data acquisition and management platform
 Development of data-based material property prediction platform


Identifying PB-free perovskite for solar cell by machine learning

Identifying optimal materials in applications research is a timeconsuming step due to the vast scope of possible materials composed of three-dimensional networks of elements. Datadriven research has recently received attention as a new route to accelerating this step. This approach uses a materials' database and statistical tools that efficiently screen candidates in a search for optimal materials. The availability of open-access databases

of material properties, along with machine learning (ML) techniques, has rapidly advanced research in this area. Over the last decade, ML has been applied to materials science problems in a variety of directions.

The use of ML in materials science, however, has been hindered by the accuracy and interpretability of predictive models. Complex interaction among compositions of materials leads to highly nonlinear relationships between material features and target properties. To accurately describe such relationships, nonlinear ML algorithms have been utilized due to their flexible forms. However, lack of interpretability of most nonlinear ML predictive models prevents further mechanistic understanding such as finding key ingredients for target properties. Thus, finding ML algorithms that can achieve both accurate prediction and interpretability is crucial to the further advance of data-driven materials research.

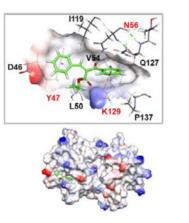
Tree-based learning algorithms can be one candidate due to their advantages in both accuracy and interpretability. Utilizing treebased algorithms, we here focus on finding optimal candidates for double perovskite solar cells. While recent solar cell technology has been prompted by the development of hybrid lead perovskites having an increase of power conversion efficiency and low-cost manufacturing, the inclusion of lead ion raises environmental issue preventing commercialization. Alternatively, a new strategy using mixed mono- and tri-valent cations, in the form of the double perovskite has been introduced to replace lead-based perovskite solar cell materials. In this approach, sizable combinations of double perovskites can be possible, and thus a combination of high-throughput computations and the ML technique can be a powerful tool to explore the large combinatorial space.

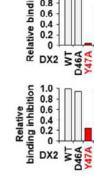
In this research, employing the gradient-boosted regression tree (GBRT) algorithm and a dataset of calculated electronic structures of A2B1+B3+X6, we present an ML-based investigation, which can be ultimately used to identify Pb-free double perovskite solar cell materials. The GBRT method allows us to obtain highly accurate predictive models for the heat of formation (ΔH_{F}) and bandgap (E_{g}), with importance scores for each feature of materials.

Based on the scores, we extract crucial features to determine the values ΔH_F and E_g of halide double perovskites, enabling an overall understanding of the relationships between features and properties. Finally, we discuss the relevance of extracted features to the chemical and physical aspects of ΔH_F and E_g , and practical approaches of the ML model toward finding optimal candidates of Pb-free halide double perovskites solar cell materials. Jino Im et al., npj Comput. Mater. 5, 1-8 (2009)

Drug Information Platform Center

Head / Lee Sunkyung / leesk@krict.re.kr

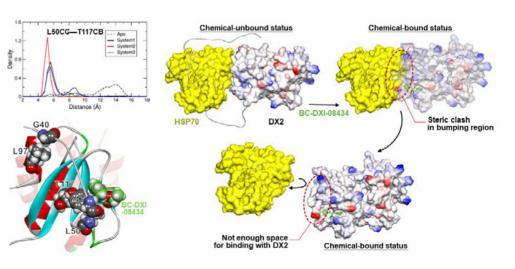

· Establishment of national platform on chemical libraries and big data for drug discovery · Collection and management of chemical libraries and support for library utilization

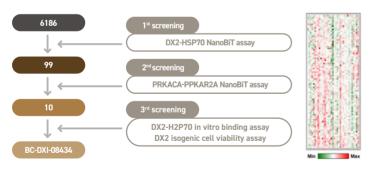

Molecular dynamic simulation to prove the suppression of protein-protein interaction via conformational change induced by chemical

Since many physiological and pathological cellular events are controlled by protein-protein interactions (PPIs), modulating PPIs promises attractive ways to develop drugs for many diseases. Although disease-causing protein-protein interactions (PPIs) have been emerged as attractive therapeutic target space, identification of chemicals effectively inhibiting PPIs remains challenging. Our previous report demonstrated that AIMP2-DX2 is stabilized by its interaction with HSP70 and that inhibition of this interaction between the two proteins reduces DX2-mediated cancer proliferation. Then, we searched for an inhibitor of the interaction between DX2 and HSP70 to suppress

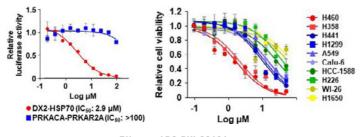
DX2-dependent cancer progression using a luciferase-based complementation assay system. In a primary screen using 6,186 compounds from the Korea Chemical Bank (KCB), 99 compounds showed over 60% inhibition at 5 µM. The specificity of these 99 compounds for DX2 was determined using the binding pair protein kinase A catalytic subunit (PRKACA) and protein kinase A type 2A regulatory subunit (PRKAR2A), and 10 compounds were found to specifically suppress the binding of DX2 and HPS70 but not PRKACA-PRKAR2A. An in vitro pull-down assay using the purified HSP70 and glutathione S-transferase (GST)-DX2 proteins demonstrated that BC-DXI-08434 significantly inhibited the interaction of the two proteins. Furthermore, BC-DXI-08434 suppressed DX2-dependent cell proliferation in a DX2-inducible system.

To investigate the binding mode of BC-DXI-08434 with DX2, we performed a molecular modeling study because the disordered NFR was not visible in other structural assays. Due to the disordered nature of the NFR, a series of relaxation procedures was conducted by molecular dynamics (MD) simulations. The representative structure obtained from the MD simulation, including the well-relaxed conformation of the NFR, was used as the initial structure of DX2 for the docking of BC-DXI-08434. The carbonyl group of benzoyl and ester moiety on BC-DXI-08434 interacts with side chain of amine of N56 and K129, respectively, by H-bonding. There was π - π interaction of styrene in BC-DXI-08434 with Y47 of DX2. To validate the results from the

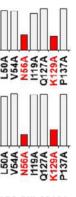



Binding mode of compound with DX2

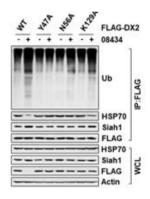
and DX2 mutants


Further analysis using MD revealed that the interaction of BC-DXI-08434 in the pocket of DX2 surrounding Tyr47, Asn56 and Lys129 induces a steric clash against HSP70 by direct binding-

Determination of Mode of action of BC-DXI-08434



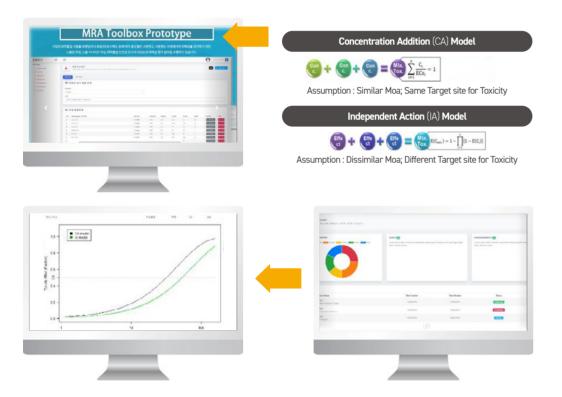
Identification of hit by HTS using KCB Libraries



Efficacy of BC-DXI-08434

MD simulation, we generated alanine substituents of the DX2 amino acids suggested to be critical for binding BC-DXI-08434. We checked the binding of alanine mutants to chemicals using biotin-08434 via an in vitro pull-down assay. Wild-type DX2 (DX2 WT) and most of the mutants tested showed strong binding, but the binding of DX2 Y47A, N56A and K129A mutants to biotin-08434 was significantly reduced. Because Y47, N56 and K129 are critical residues of DX2 for binding with BC-DXI-08434, we tested the BC-DXI-08434-mediated ubiquitination of the selected DX2 mutants. resulting in a decreased level of DX2, but DX2 ubiguitination and DX2 protein expression of the tested mutants were not affected by treatment with BC-DXI-08434.

Relative binding of BC-DXI-08434


293T cells expressing each FLAGtagged DX2 mutant were subjected to ubiquitination assay

interference and a conformational change of DX2, resulting in turnover of the DX2 protein.

Chemical Safety Research Center

Head / Kim Jong Woon / jkim@krict.re.kr

Development of technology for human health risk assessment and reduction
 Chemical safety information research

MRA Toolbox Prototype: Mixture Risk Assessment Toolbox

MRA toolbox : mixture risk assessment toolbox

Chemical risk assessment has mainly focused on single substances rather than mixtures although living organisms may be exposed to different chemicals simultaneously. Scientific findings have shown that toxicity can be caused by cocktail effects of mixture components presenting even at or below their no observed effect levels (NOELs). These studies make chemical regulations (e.g. EU REACH/CLP, BPR, etc) consider mixture toxicity.

In Winter 2019, Chemical Safety Research Center developed a web-based mixture risk assessment toolbox (MRA Toolbox) as a prototype web tool which provides different predictive

The bead type neutralizer and absorber

models for calculating mixture toxicity, estimating exposure concentrations, and determining risk characterization ratios of chemical products including consumer products. The current version of MRA Toolbox has two major conventional prediction models for assessing additive toxicity as a mixture toxicity effect: concentration addition (CA) and independent action (IA) models. Those models have been frequently used as default methods under related global chemical regulations. The MRA Toolbox will be published in 2020 and continuously updated with integrated additive toxicity models, exposure assessment models, and combined risk assessment models. The toolbox ultimately pursues supporting the industry to develop safer chemical products in product design.

· MRA Toolbox will be launched on https://chemsafety.krict. re.kr/ in 2020.

Bead-type neutralization/sorbent agents for hazardous materials

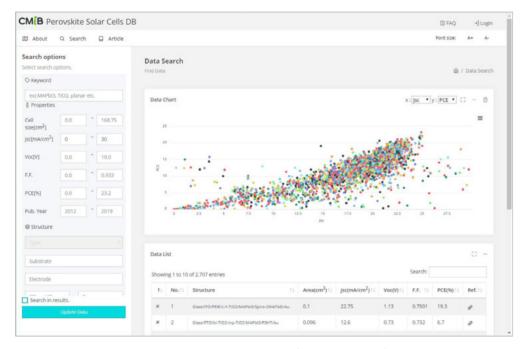
Chemical Safety Research Center carried out a 5-yearproject for solving the problem of inaccessibility in emergency response of mass spill of acidic, basic and hydrocarbon chemicals. Through the project, three types of first bead-typed control agents with ensuring long-distance spraying, excellent neutralization and absorbing functions were successfully their required doses as emergency response to chemical accidents. ERCAR was released in winter 2019 and it can be freely downloaded from Google Play. Download website of ERCA: https://play.google.com/store/ apps/details?id=com.ideainfo.krictapp

ERCAR App on Google Play

developed, and three patents were registered. The beadtyped smart control agents has been developed with apparent neutralization calories analysis and neutralization of control agents and indicator functions for chemical spills. We expect that these techniques highly contribute to prevent fight fighters, the public, and the environment from chemical accidents.

Ryu et al., 2019, Proceedings of KSIEC Fall Meeting, Development of neutralization/sorbent agent for hazardous materials,

ERCAR App: a mobile application of emergency response for chemical accident risks


ERCAR app was developed by Chemical Safety Research Center as a mobile application to provide emergency response guideline against chemical accident risks. Through the app, users can easily get the information on major physico-chemical properties, hazards, response measures, etc. for preventing possible risks from chemical accidents. In addition, ERCAR helps the users select proper chemical controls agents and calculate their required doses as emergency response to chemical accidents. ERCAR was released in winter 2019 and it can be freely downloaded from Google Play.

Chemical Materials Solutions Research Center

Head / Choi Woo Jin / wjchoi@krict.re.kr

• Development and support of advanced coating process technologies based on pilot-scale roll-to-roll coating facilities and expertise

· Development and support of pilot-scale synthesis, purification, and dispersion process

Web-based search system of PSC-DB (www.perovskite.info)

KRICT opened database of perovskite solar cells (PSC-DB)

As a global research institute of perovskite solar cells (PSCs), we opened the database of perovskite solar cells (PSC-DB). PSCs have attracted great attention due to their high power conversion efficiency (PCE) compared with other solar cells. Since the performance of PSCs depends on materials, processes, and layered structures, providing the information of PSCs will be helpful to researchers. To built the database of PSCs (PSC-DB), we has extracted experimental results of 2,711 PSCs from 688 articles published between 2013 and 2019. The PSC-DB is designed for users to easily access, search, and utilize. The PSC-DB is now available through a web-based system (URL: www. perovskite.info). The providing information is as follows: the type and structure of the PSCs, the materials and processes applied to each layer, the active area and basic characteristics of solar cell (Jsc, Voc, F.F, PCE), article's bibliographic information (title, journal, published year, author, country, abstract, DOI).

KRICT and AIMCAL held the first R2R Asia Conference 2019

The world's largest roll-to-roll coating conference was held at Korea Research Institute of Chemical Technology(KRICT) in Daejeon for the first time in Asia. KRICT and AIMCAL(Association of International Metallizers, Coaters, and Laminators) held '2019 R2R Asia Conference' at the Didimdol Plaza of KRICT from May 28-30, 2019.

The 'R2R Conference' is an international meeting for roll-to-roll experts to exchange technical information and form network. We

& optical solutions at Applied Materials. In-Sung Son presented 'Polymeric films in electronics packaging and display industries', and Oliver Chen introduced 'R2R technology for emerging flexible products'.

In an oral session presented by more than 40 experts, Dr. Nicolas Schiller of the Fraunhofer FEP presented 'Ultrathin flexible glass: Potentials and challenges for vacuum thin film coating'. Sang Kyun Kim, a senior researcher at Kolon Industries, introduced 'Current research on the colorless polyimides for foldable display'. In addition, Dr. Andreas Nilsson of the Von Ardenne and Dr. Seong-Keun Cho of the KRICT presented 'R2R technology and equipment for barrier applications' and 'Chemical and mechanical structures of SiN films as gas barrier layer', and AIMCAL have been discussing for several years to hold the 'R2R Conference' in Asia, signed an MOU to host the conference in 2018, and finally held the '2019 R2R Conference Asia' for the first time in Asia this year. About 150 experts in domestic and foreign roll-to-roll equipments, materials and coating processes participated in this conference, and in particular a large number of Korean businessmen participated to exchange information on recent trends in technology development.

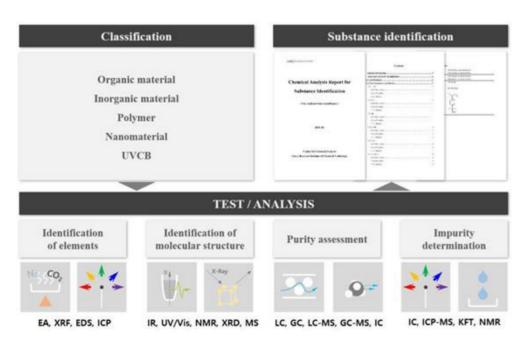
The conference was held over three days with 11 sessions, including coating and surface treatment technologies, roll-toroll sputtering, moisture barrier and batteries. The keynote speeches were presented by In-Sung Son, executive director of Innox Advanced Materials, and the Oliver Chen, head of display

respectively.

We both agreed on continued exchanges in the future so that the 'R2R Asia Conference' could be reborn as the place for exchanges of Asia's top roll-to-roll industry. In addition, through this conference, the Chemical Materials Solutions Center of KRICT laid the foundation for growth as a world-class roll-toroll hub institution. 80

Chemical Analysis Center

Head / Rho Ye Cheol / rhoyc@krict.re.kr


· Providing chemical analysis technology · Developing technological grounds for chemical analysis

Analysis Platform for chemicals and their products against **REACH***

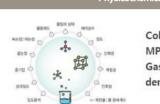
REACH is a regulation to enhance public health and protect the environment from the risks posed by chemicals by providing hazards and risks data of chemical substances. EU(European Union)-REACH and K(Korea)-REACH have been in effect since 2007 and 2015, respectively. REACH established procedures for

collecting and assessing information regarding the properties and hazards of chemical substances. Therefore, manufactures or importers are obligated to complete the EU/K-REACH registration.

The Chemical analysis center has built a platform to serve detailed information required for chemical registration. The platform has focused on the substances identification

Registration, Evaluation, Authorization and Restriction of Chemicals

and physicochemical properties of chemicals. The platform technology is based on guidelines of SIP (substance identity profile) and SPP (substance physicochemical profile) established by the type of the chemical substance, such as organic/ inorganic material, polymer, nanomaterials and UVCB (Unknown or Variable Composition, Complex Reaction Products and


SEM-EDS, Cryo-FE-SEM-EDS XRD, HR-XRD, HT-XRD, XRC(X-ray Crystallograph) ED-XRF, WD-XRF

Chromatograph/MS

X-ray Electron microscope

GC. GC-MSD. HR GC-TOF-MS. GC×GC-TOF-MS LC, LC-MS, HR LC-Q-TOF-MS HR-MS, MALDI-TOF-MS

- REE / B E4.44

Biological Materials). The products are substance identity and substance physicochemical reports that can be registered with chemical agency. Moreover, instruments and analytical methods in accordance with OECD guidelines for physicochemical characterization were built. The Chemical analysis center can provide one-stop service of joint-utilizable test/analysis against regulation of chemicals and their products through 60 integrated

Spectrometry-Organic-thermal analysis

700Mhz NMR, 500Mhz w/CryoProbe, IR, Vacuum-Microscope-IR, Near-IR, FT- & dispersive-Raman EA(Elemental analyzer) TGA, DSC

Inorganic-moisture analysis

ICP-AES, ICP-MS, AAS, IC **KF(Karl Fischer titrator)**

Physicochemical properties

Colorimeter, Dissolution system, MP/BP testor, VP testor, Gas Pycnometer, Oscillating densitometer, PSA, Viscometer

- instruments for substance identification and physicochemical property test.
- The Chemical analysis center has a various equipment for substances identification and physicochemical properties of chemicals, and supports activities for research and development and technical improvement.

Reliability Assessment Center for Chemical Materials

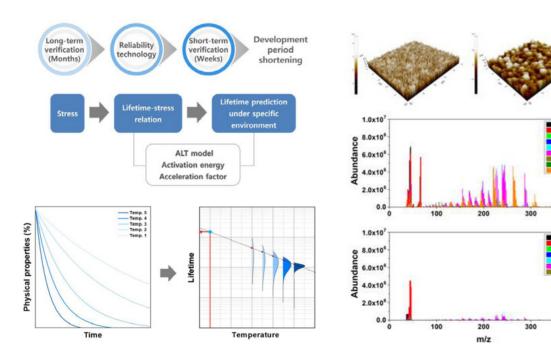
Head / Heo Kyu Young / kheo@krict.re.kr

· Development of technologies for material reliability and accelerated weathering tests Operation of platform for chemical material failure analysis and accelerated degradation test

Development of reliability assessment techniques for chemical materials

The reliability assessment center for chemical materials is specialized in assessment on material reliability and failure analysis. We are devoted to the quality improvement of chemical materials by establishing a reliability assessment (performance,

environment, and durability) system that is world class and providing technical support. Reliability refers to the basic quality over time, and the ability to maintain the initial quality of the product satisfactorily during the target life.


Reliability assessment is a core technology area that assesses environmental resistance to confirm how long the product will

	evaluation standard	intellectual property	failure analysis	company standard	technology transfer
outcome	36	14	246	10	25

accelerated weathering apparatus for weathering using test method simulating example light emitting plasma actual climate

vehicle link part in cold region

noise mechanism of weathering test method weathering test method for 5G LTE repeater using light emitting enclosure plasma

Lifetime assessment of chemical deposition materials for semiconductor and display

7th KRICT Weathering School (2019.12.04)

withstand the environment, and predicts and verifies durability or failure rate in advance. Since 2000, we are a leading research center in Korea for developing reliability evaluation standards and new test evaluation techniques, evaluating accreditation, and supporting failure analysis. Furthermore, we provide total solution to improve the guality and reliability of chemical materials based on reliability experts, advanced analysis, and test infrastructures. (Advanced weathering test infrastructures and test method standardization)

We pursued the installing the weathering evaluation equipments and supporting the related chemical industries. Also, we have developed accelerated weather evaluation equipment and related testing method based on the simulated reality. (Accelerated test method for chemical deposition materials) We have developed lifetime assessment of chemical deposition materials for the semiconductor and display devices which need extremely high reliability over processing period and storage. Also, we have found that purity can be predicted by using viscosity properties that can be measured quickly and easily in solution phase of deposition precursor.

This technique is expected to be useful for predicting the expiration of deposition materials in a real process environment or for diagnosing current state of the materials.

KRICT held the 7th Weathering School

KRICT Weathering School is annual seminar for introducing new weathering technology. Over 150 technicians from various industries have been participating in every year since 2013.

Weather resistance refers to the property of chemical materials and products to withstand the climatic environment such as sunlight, heat and moisture, which is an essential infrastructure technology for the automotive, home appliance, and construction industries. In particular, the surface properties of chemical materials such as transparency, hydrophilicity (water-binding properties), water repellency, and heat and gas barrier properties are becoming more important.

In addition, interest in the emotional guality of the material like maintaining gloss, color, and texture is gradually increasing. Our center is promoting domestic weathering assessment research by educating the current state of chemical weathering test.

Enhanced national Competitiveness through acquisition of novel technology for petrochemical and energy industry

The CCP contributes to sustainable growth of the nation's key industries and to climate change adaptation by developing novel technology for the economic production of basic chemicals and stable energy supply.

Convergent Research Centers

Development of convergence solution for new virus infection

The CEVI aims to develop the convergent solution for preventing a rapid spread of emerging virus by developing a highly sensitive detection method, a preventive vaccine, an anti-viral drug, and a preventing system for high-risk emerging virus(i.e. MERS-Cov. Zika, etc.)

Center for Convergent Chemical Process(CCP)

Center for Convergent Research of Emerging Virus Infection(CEVI)

Center for Convergent Chemical Process(CCP)

Director / Park Yong Ki / ykpark@krict.re.kr

Process Technology Research

Olefin Separation Research

energy-efficient olefin/paraffin separation

membranes for olefin/paraffin separation

- Development of process design package for reaction and separation processes in petroleum refining and petrochemical industries
- Development of thermal management technology for petroleum refining and petrochemical process

Heavy Oil Upgrading Research

- Development of highly efficient new hydrocracking catalysts for Heavy oil upgrading technology
- Development of highly efficient hydrocracking reactor and process technology for upgrading of heavy oils
- Development of technology to produce hydrogen from steel industry by-product gases

A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water sorption-driven refrigeration

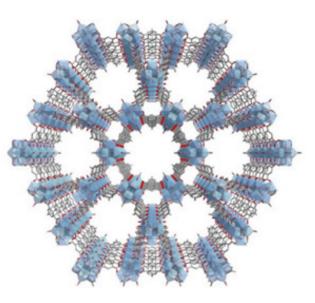
Global energy consumption for heating and cooling in residential areas has increased steadily during the past decades and is forecasted to accelerate in the coming years, especially for cooling purposes1. The current systems and adsorbents used in heating and cooling processes rely mainly on non-sustainable energy resources and this is strongly against the recent global agreement aiming to reduce energy generated using fossil fuels.

Therefore, the development of alternative materials and systems involving clean and renewable energy resources has attracted considerable attention over the last few years.

Among them, green adsorption-driven heat pumps and chillers have aroused a great interest over the last few years. They exhibit many advantages including the use of clean energy sources, such as solar and industrial waste heat, the low driving and regeneration temperatures, as well as the involvement of environmentally friendly working fluids, such as water and ethanol.

In particular, for the cooling application, facile regeneration at low temperature (< 70°C) is a critical requirement to develop advanced water adsorbents since commercial adsorption

Olefin Synthesis Research

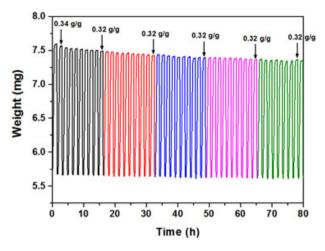

 Development of catalysis for naphtha and methanol-to-olefin (NMTO) catalytic cracking process

· Development of new porous adsorbents and technology for

· Development of technology for high-performance hollow fiber

- Development of technology for olefin inter-conversion (ethylene-topropylene) allowing olefin supply control
- Development of fluidized propane dehydrogenation (FPDH) technology for continuous reaction-regeneration fluidized bed process
- Cooling Water Water **** Adsorbent Qads Chamver1 **** Hot Water ŧŧ Under Chilled Cacuum Water ഹസം Evaporator

chillers based on LiBr/water show very poor cooling capacity below 75°C. The use of advanced water adsorbents which outperform commercial silica gel and SAPO-34 adsorbents in terms of working capacity and regeneration temperature paves the way towards the next generation of adsorption-driven heat reallocation systems, thus making them more cost- and energyefficient. Therefore, the discovery of new MOFs water adsorbents


3D structure of MIP-200 viewed along the c-axls with larger hexagonal and smaller trlangular channels.

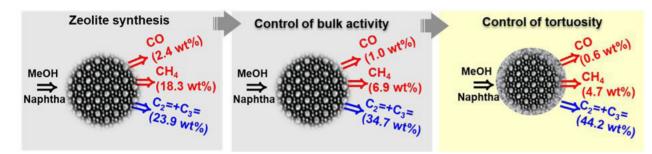
that could be regenerated and cycled at low temperatures for the refrigeration purpose is highly expected. However, it remains a great challenge to date.

We present a large-pore MOF constructed from a Zr_6 oxocluster and tetracarboxylate linker (3,3',5,5'-tetracarboxydiphenylmeth ane; H4mdip), denoted as MIP-200 (MIP stands for the Materials of the Institute of Porous Materials from Paris), that possesses water-adsorbent properties and overcomes the limitations outlined above.

This material features large one-dimensional (1D) hydrophilic channels in its crystal structure, which leads to outstanding water sorption properties including a high uptake of water in a low relative pressure range, facile desorption at fairly low temperatures (< 70°C and a very high COP for refrigeration. Because of the combined advantages of its cooling performance, along with its cost-effective, green and scalable synthesis and good chemical and mechanical stability, this MOF material, to the best of our knowledge, is one of the most promising water adsorbent materials developed so far in comparison with commercial benchmarks and previously reported MOFs.

Therefore, MIP-200 appears to be a promising candidate for adsorption-driven refrigeration that is compatible with the shaping process required for large-scale utilization. This work provides the promise of developing highly stable MOFs for

applications in next-generation adsorption-driven chillers, heat pumps and dehumidifiers to achieve more efficient energy consumption.

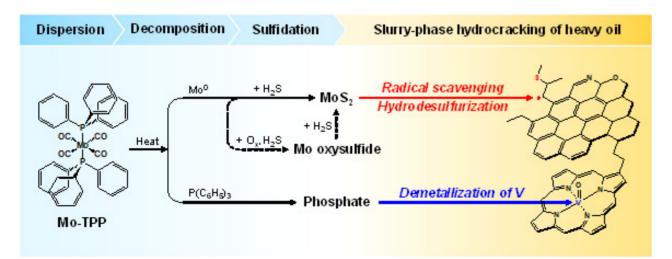

Naphtha-methanol hybrid catalytic cracking(NMTO), an energy-saving olefin production technology

Light olefins such as ethylene and propylene are valuable raw materials in the petrochemical industry for the production of various polymer products, including but not limited to, polyethylene, polypropylene and co-polymers. The conventional process for light olefin production is steam cracking of naphtha which proceeds at high temperature in the range of 800-900°C. The process is highly endothermic, which results in high energy consumption and excessive byproduct production. Besides, in the current steam cracking process, it is difficult to control the ratio of propylene to ethylene, as the reaction occurs via a free radical mechanism.

As an alternative to steam cracking, the naphtha catalytic cracking process in fluidized reactor(K-COT[™] process) has been developed by KBR, SK Innovation, and KRICT to produce light olefins at lower reaction temperature (<700°C). In this process, phosphorus modified ZSM-5 is used as a commercial catalyst to give almost equal ratio of propylene/ethylene with increase of 30% of light olefin yields at the lower reaction temperature(600~650°C), compared to the conventional steam cracking. Using the acid catalyst like a zeolite may achieve the

cracking of naphtha at a relatively low temperature, but there is still the problem of system heat supplying. In order to develop an energy-saving process, we have tried the hybridization of endothermic catalytic naphtha cracking (NTO) with exothermic methanol-to-olefins (MTO) reaction. To carry out the NTO and MTO reactions simultaneously, relatively high reaction

temperature is required. However, if the catalyst is not prepared properly, a lot of low-valued by-product such as CO and CH₄ are produced. According to our recent study, the controlling of physical and chemical properties of catalyst is quite important to hybridize the NTO and MTO reactions successfully. Based on the kinetic diameter of naphtha and methanol, zeolite



Catalyst design for reduction of byproduct in NMTO reaction

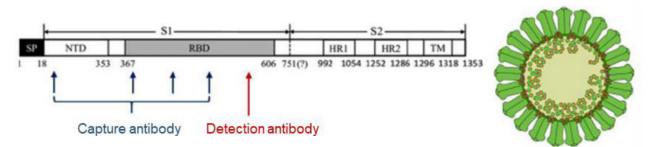
with hydrothermal stability was selected and then the catalyst for hybridized naphtha and methanol reaction was synthesized by controlling the acidity. When performing the NMTO reaction under high temperature condition, not only did the synthesized catalyst produce 15% higher olefins yield than conventional commercial catalyst, but it also reduced energy consumption by 30% compared to the conventional steam cracking process in fluidized reaction system.

Slurry-phase hydrocracking of heavy oil over Mo precursors

A practical approach for enhancing the performance of dispersed catalysts during slurry-phase hydrocracking is the modification of the ligand structure of the catalyst precursor. In this regard, an oil-soluble Mo precursor with triphenylphosphine ligands (Mo-TPP) was prepared and further applied to the slurry-phase hydrocracking of vacuum residue (VR). The Mo-TPP precursor resulted in a better catalytic performance than a commercial precursor (Mo-octoate) in a semi-batch reactor at 410°C and 110 bar. In particular, the use of Mo-TPP enhanced the radical scavenging and hydrodesulfurization activities owing to an excellent hydrogenation ability originating from the initial number of active sites. The phosphate compound, derived from the TPP ligands, promoted the conversion of asphaltenes via demetallization of the intrinsic V species in the VR. These results demonstrated that Mo-TPP is an efficient precursor for achieving coke suppression that also improves product quality. This work will appear in the early 2020 issue of the Journal of Catalysis.

Center for Convergent Research of Emerging Virus Infection(CEVI)

Director / Kim Bum Tae / btkim@krict.re.kr


Virus Diagnosis Research

· Development of high-sensitive screening technology for point-of-care testing (POCT) · Development of multi-technology based multi-sided diagnostic platform

Vaccine Research and Development

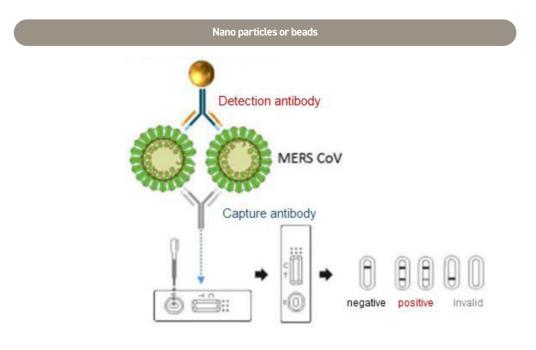
· Vaccine development against emerging viruses · Establishment of a novel system for assessing vaccine safety and efficacy · Research on viral diseases (Viral pathogenesis)

Development and technology transfer of MERS antigen rapid sequence analyzed by IEDB Analysis Resource. Antigen peptides diagnosis kit were synthesized with 80% purity, and conjugation of the For analysis of MERS antigen, B-cell Linear epitope sequences double-immune peptides C-term Cystein and KLH with S-S were derived from NCBI Reference Sequence considering binding, and for ELISA peptides, C-term Cystein and BSA were the hydrophilicity and surface accessibility of Spike 1 protein conjugated with S-S binding. Monoclonal and polyclonal antigens

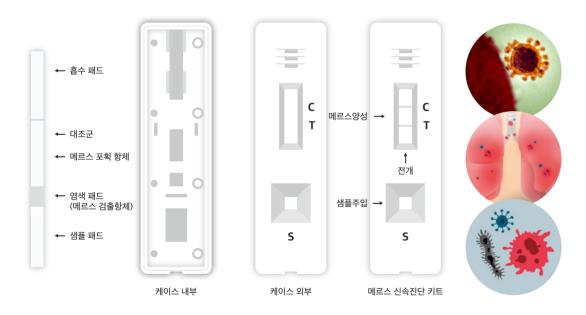
Schematic diagram of MERS CoV S protein

were produced using these antigens. Gold nanoparticles were conjugated to monoclonal antibody (S-RBD3 # 8E5, Capture Ab.) and polyclonal antibody (S-RBD1 # 2, Detection Ab.) to produce Dipstick with Universal LFA kit and recombinant MERS CoV Spike 1 protein was detected. The monoclonal antibody (S-RBD3 # 8E5, Capture Ab) was dispensed with a pipette, and

89

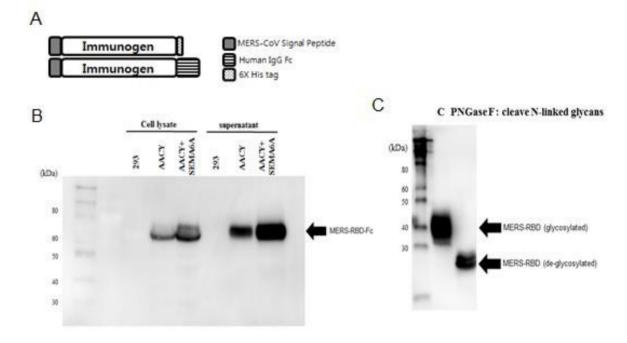

Anti-viral Research

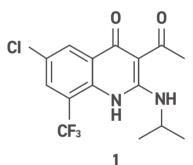
- · Discovery of wide-spectrum anti-corona virus drug candidates for the clinical use
- · Development of therapeutic agents for super-bacteria


Virus Spread Prevention

- · Development of Korean prediction model for preventing virus infection spread
- · Development of smart construction materials and tunnels for prevention of infectious diseases

gold nanoparticles were conjugated to the polyclonal antibody (S-RBD1 # 2, Detection Ab) to prepare a dipstick manually. Using this, MERS CoV-infected Huh-7 cell lysate was detected. "MERS rapid diagnosis technology" utilizing the developed antibody was transferred to the Korean diagnostic company "WELLS BIO". (2019.2.28.)


MERS rapid diagnosis kit developed by the CEVI(KRICT)



Development of novel MERS vaccine candidate

Viral structural proteins such as envelope, capsid and spike proteins are the most attractive targets for the development of preventive vaccine. It has been reported that various posttranslational modifications of viral structural protein such as glycosylation affect binding affinity between virus and host receptor and subsequent immunogenicity during viral infection.

Thus, glycosylation of viral structural proteins is very important for increasing immunogenicity of recombinant vaccine candidate. To develop a novel MERS vaccine candidate, we have produced recombinant MERS spike receptor-binding domain (RBD) protein in mammalian cells supporting consistent protein glycosylation. To produce glycosylated recombinant RBD

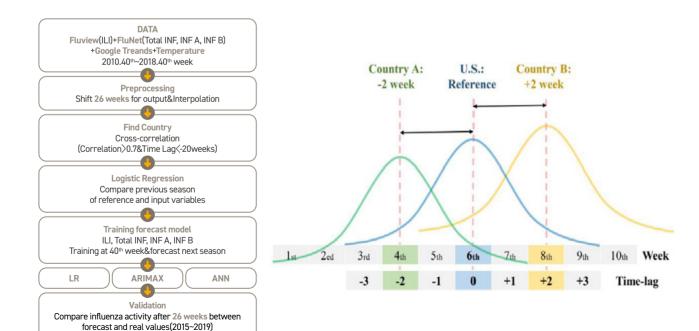

protein, we introduced multiple novel techniques including: (i) insertion of RBD gene in transcriptionally active sites of human chromosome using homology-directed repair (HDR) method based on CRISPR-Cas9 DNA editing technology, (ii) fusion of RBD protein and signal peptide facilitating secretion of glycosylated viral protein from the cell to culture media.

This technique simplifies the purification strategy of recombinant protein, (iii) preparation of RBD protein fused to novel cellpenetrating peptide (CPP) for effective delivery of viral protein into antigen presenting cells. This system supports enhanced immunogenicity of vaccine candidate during viral infection.

IC₅₀: 0.77 µM CC_{50} : >25 µM

Synthesis and biological evaluation of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives as potential MERS-**CoV** inhibitors

3-Acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives were synthesized and evaluated to show high anti-MERS-CoV inhibitory activities. Among them, 6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino) quinolin-4(1H)-one (6u) exhibits high inhibitory effect (IC50=86 nM) and low toxicity (CC50 >25 μ M). Moreover, it shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK properties.



Study on the 2-phenylchroman-4-one derivatives and their anti-MERS-CoV activities

We screened a variety of natural products against MERS-CoV as an attempt of developing anti-MERS-CoV drugs, and many flavonoids showed anti-MERS activities. Among them, 2-phenylchroman-4-one derivatives e.g., bavachin and bavachnin separated from dry seed of Psoralea corylifolia L., Korean medicinal herb exhibited comparatively good activities. Bavachin and bavachinin showed good anti-MERS-CoV activities of 2.9 and 7.9 μ M respectively by phenotypic cellular screening with vero cell. As the small structural difference between two compounds (-OH *vs.* –OMe) could change the anti-viral activity, we tried to synthesize the bavachin derivatives for structure-activity-relationship study (SAR study).

Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries

Our study forecasts the 2018–2019 seasonal influenza after 26 weeks in the U.S. using the 2018 seasonal influenza in Australia and Chile. The correlation between the seasonal influenza patterns in the U.S., Australia, and Chile could be used to forecast the next seasonal influenza pattern, which can help to determine influenza vaccine strategy approximately six months ahead in the U.S. Our prediction model allows to estimate peak timing, peak intensity, and type-specific influenza activities for next season at 40th week.

Appendix

Annual Report 2019

Korea Research Institute of Chemical Technology

- 94 List of SCI Articles Published in 2019 (A DOI is uploaded to KRICT website)
- 114 List of International Patents Issued in 2019
- 121 List of International Patents Registered in 2019
- 123 List of Technology Transferred in 2019

List of SCI Articles Published in 2019

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
Department	Green Carbon Research Center	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction	Cho Young Hoon et al.	CHEMISTRY OF MATERIALS	31	3967
	Green Carbon Research Center	Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation	Cho Young Hoon et al.	J. of Membrane Science	572	300
	Green Carbon Research Center	Catalytic Reaction System for Rapid Selective Oxidation of Alkyl Sulfide	Han Yo-han et al.	J. of Hazardous Materials	379	120830
	Green Carbon Research Center	Mechanistic reaction model for oxidation of sulfur mustard simulant by a catalytic system of nitrate and tribromide	Han Yo-han et al.	J. of Hazardous Materials	365	511
	Green Carbon Research Center	Integrated production of polymer-grade lactide from aqueous lactic acid	Hwang In Taek et al.	Korean Journal of Chemical Engineering	36	203
	Green Carbon Research Center	Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA) metal impregnated activated carbons under humid conditions	Hwang Young Kyu et al.	J. of Hazardous Materials	368	550
	Green Carbon Research Center	Highly Efficient Hydrotalcite/1-Butanol Catalytic System for the Production of the High-Yield Fructose Crystal from Glucose	Hwang Young Kyu et al.	ACS Catalysis	10	1388
	Green Carbon Research Center	Adsorption of hydrocarbons commonly found in gasoline residues 1 on household materials studied by inverse gas chromatography	Joungmo Cho et al.	J. of Chromatography A	1594	149
	Green Carbon Research Center	Enhanced boron rejection of a thin-film composite membrane by embedding additives including hydroxyl groups	Kim In-Chul et al.	Desalination and Water Treatment	162	112
Department	Green Carbon Research Center	Enhancement in permeability of piperazine- based thin-film composite membrane via surface roughening using a highly organic-soluble additive	Kim In-Chul et al.	J. of Applied Polymer Science	136	47913
of Carbon Valorization	Green Carbon Research Center	In vitro activity of DNF-3 against drug-resistant Mycobacterium tuberculosis	Lee Kee In et al.	International Journal of Antimicrobial Agents	54	69
	Green Carbon Research Center	Pharmacokinetic Study of NADPH Oxidase Inhibitor Ewha-18278, a Pyrazole Derivative	Lee Kee In et al.	Pharmaceutics	11	482
	Green Carbon Research Center	Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum oxide	Lim He Kyoung et al.	Applied Biochemistry and Microbiology	55	375
	Green Carbon Research Center	High performance polyacrylonitrile-supported forward osmosis membranes prepared via aromatic solvent-based interfacial polymerization	Park Hosik et al.	Separation and Purification Technology	212	449
	Green Carbon Research Center	Maneuvering the ordered mesoporosity of electrospun silica nanofibers for water harvesting	Park Hosik et al.	Microporous and Mesoporous Materials	281	23
	Green Carbon Research Center	Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties	Park You In et al.	Polymer Degradation and Stability	162	1
	Green Carbon Research Center	Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes	Park You In et al.	J. Ind. Eng. Chem.	73	276
	Green Carbon Research Center	On the effects of water exposure of as-synthesized LTA membranes on their structural properties and dehydration performances	Park You In et al.	Separation and Purification Technology	238	116493
	Green Carbon Research Center	Stability and pervaporation characteristics of PVA and its blend with PVAm membranes in a ternary feed mixture containing highly reactive epichlorohydrin	Park You In et al.	RSC Advances	9	5908
	Green Carbon Research Center	Surface-modified halloysite nanotube-embedded polyvinyl alcohol/polyvinyl amine blended membranes for pervaporation dehydration of water/isopropanol mixtures	Park You In et al.	Applied Surface Science	493	193

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Green Carbon Research Center	Surface-modified polyvinyl alcohol (PVA) membrane for pervaporation dehydration of epichlorohydrin (ECH), isopropanol (IPA), and water ternary feed mixtures	Park You In et al.	J. Ind. Eng. Chem.	81	185
	Green Carbon Research Center	Tailoring the porous structure of hollow fiber membranes for osmotic powergeneration applications via thermally assisted nonsolvent induced phaseseparation	Park You In et al.	J. of Membrane Science	579	329
	Green Carbon Research Center	Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis	Park You In et al.	Desalination	449	41
	Environment & Sustainable Resources Research Center	Dry reforming of methane over Ni-substituted CaZrNiOx catalyst prepared by the homogeneous deposition method	Chang Tae Sun et al.	Catalysis Communications	120	1
	Environment & Sustainable Resources Research Center	Effect of Hydrocarbon on DeNOx Performance of Selective Catalytic Reduction by a Combined Reductant over Cu-Containing Zeolite Catalysts	Chang Tae Sun et al.	ACS Catalysis	9	9800
	Environment & Sustainable Resources Research Center	Nickel Oxide-Silica Core-Shell Catalyst for Acetylene Hydroxycarbonylation	Chang Tae Sun et al.	Catalysis Communications	123	86
	Environment & Sustainable Resources Research Center	Plasma-assisted selective catalytic reduction for 2 low-temperature removal of NOx and soot simulant	Iljeong Heo et al.	Catalysts	9	853
	Environment & Sustainable Resources Research Center	Removal of NOx by selective catalytic reduction coupled with plasma under temperature fluctuation condition	Iljeong Heo et al.	J. Ind. Eng. Chem.	72	400
Department of Carbon	Environment & Sustainable Resources Research Center	Role of phosphate in ruthenium-complex-sensitized TiO2 system for hydrogen production: Mechanism and kinetics	Iljeong Heo et al.	Catalysis Today	335	236
Valorization	Environment & Sustainable Resources Research Center	Ultrafast Charge Transfer Coupled with Lattice Phonons in Two-dimensional Covalent Organic Frameworks	Jin-Ook Baeg et al.	Nature Communications	10	1873
	Environment & Sustainable Resources Research Center	Optimization of an Axial Catalyst Profile in Methane Dry Reformer:	Kim Beom Sik et al.	Ind. Eng. Chem. Res.	58	17433
	Environment & Sustainable Resources Research Center	Spatially patterned Catalytic reactor for steam-CO2 reforming of methane	Kim Beom Sik et al.	Ind. Eng. Chem. Res.	58	18731
	Environment & Sustainable Resources Research Center	System-level analysis and life cycle assessment of	Kim Beom Sik et al.	Green Chemistry	21	3442
	Environment & Sustainable Resources Research Center	Effect of fatty acid-based anionic surfactants on the emulsion properties of self-emulsifying poly(ethylene-co-acrylic acid) waxes	Kim Yeong Wun et al.	J. Ind. Eng. Chem.	71	393
	Environment & Sustainable Resources Research Center	Feasibility of Unsaturated Fatty Acid Feedstocks as Green Alternatives in Bio-Oil Refinery	Kim Yeong Wun et al.	Biofpr	13	690
	Environment & Sustainable Resources Research Center	Synthesis and antiwear properties of dicarboxylic acid derivatives containing dialkyl dithiophosphate groups	Kim Yeong Wun et al.	Lubrication Science	31	103
	Environment & Sustainable Resources Research Center	Synthesis of PIBSI Derivatives Using Highly Reactive Polybutene and Their Friction Reducing Effects	Kim Yeong Wun et al.	Polymer(Korea)	43	394
	Environment & Sustainable Resources Research Center	Toughened and hydrophobically modified polyamide 11 copolymers with dimer acids derived from waste evegetable oil	Kim Yeong Wun et al.	J. of Applied Polymer Science	136	47174

R De

Research Destant Tale				1
Department Research Center Title	Authors	Journal Title	Vol.	Page
C1 Gas & Carbon Light hydrocarbons to BTEX arom Convergent Research hierarchical HZSM-5: Effects of al Center catalytic performance		Microporous and Mesoporous Materials	276	292
C1 Gas & Carbon Convergent Research Center Light hydrocarbons to BTEX aron modified hierarchical ZSM-5 coml enhanced catalytic activity and st	bined with Jun Ki Won et al.	Microporous and Mesoporous Materials	284	316
C1 Gas & Carbon Convergent Research Center		RSC Advances	9	14176
C1 Gas & Carbon Convergent Research Center C02 hydrogenation Center C02 hydrogenation		J. of CO2 Utilization	34	522
C1 Gas & Carbon Convergent Research Center Non-oxidative dehydroaromatizat over Mo/H-ZSM-5 catalysts: A de the reaction-regeneration cycle		Applied Catalysis B: Environmental	241	305
C1 Gas & Carbon Convergent Research Center A Review on Recent Progress in t Stability of Oxygen Reduction Ele Proton-Exchange Membrane Fuel Mechanics and Experimental App	ctrocatalysts for I Cell: Quantum Kim Hyung Ju et al.	Energy Technology	7	1900312
C1 Gas & Carbon Convergent Research Center C	f SnO2	ChemElectroChem	6	2503
C1 Gas & Carbon Convergent Research Center Integrated strategy for concurren furfuryl alcohol and glycerol oxyg		J. Ind. Eng. Chem.	73	268
C1 Gas & Carbon Convergent Research Center Center Convergent Research Center Center Convergent Research Center Convergent Research Convergent Research Convergent Research Center Center Convergent Research Center Center Center Convergent Research	hromium and its Kim Jeong Hoon et al	. J. Ind. Eng. Chem.	80	345
C1 Gas & Carbon Convergent Research Department Center Electrodialytic separation of volat from hydrogen fermented food w		International Journal of Hydrogen Energy	44	3356
of Carbon Valorization Convergent Research Center C		Separation and Purification Technology	223	63
C1 Gas & Carbon Convergent Research Center Highly C0 selective Cu(I)-doped N adsorbent with high C0/C02 sele complexation: Effects of Cu(I) load temperature	ectivity due to π	Microporous and Mesoporous Materials	274	17
C1 Gas & Carbon Hybrid membranes based on ioni Convergent Research functionalized poly(vinyl benzene Center for C02 capture		. J. of Membrane Science	572	365
C1 Gas & Carbon Convergent Research Center Convergent Research Center Center CC1 Gas & Carbon Convergent Research CC1 Gas & Carbon Convergent Research CC1 Gas & Carbon Convergent Research CC1 Gas & Carbon CC1 Gas & Carbon Convergent Research CC1 Gas & Carbon CC1 Gas & Carbon CC		Microporous and Mesoporous Materials	279	271
C1 Gas & Carbon Mixed matrix membranes incorpo Convergent Research Center (3D0m-i) zeolite		Separation and Purification Technology	210	29
C1 Gas & Carbon Convergent Research Center Palladium-copper membrane mod separation at elevated temperatu		Korean Journal of Chemical Engineering	36	563
C1 Gas & Carbon Convergent Research Center Solid-state facilitated transport of through mixed matrix membrane		. J. of Membrane Science	592	117373
C1 Gas & Carbon Convergent Research Center Convergent Research Center Convergent Research Center Convergent Research Convergent Research Convergen	nbranes by UV/ ion: fabrication, Kim Jeong Hoon et al	. J. of Membrane Science	589	117214
C1 Gas & Carbon UV-crosslinked poly(PEGMA-co-M Convergent Research Center N2 and C02/C0 separation		. J. of Membrane Science	587	117167

Research	Research Center	Title	Authors	Journal Title	Vol.	Page
Department	Environment & Sustainable Resources Research Center	Zeolite nano-reactor for investigating sintering effects of cobalt-catalyzed Fischer-Tropsch synthesis	Lee Jin Hee et al.	Ind. Eng. Chem. Res.	58	5140
	Environment & Sustainable Resources Research Center	Highly regioselective and sustainable solar click reaction: A new Post-synthetic modified triazole organic polymer as recyclable photocatalyst for regioselective azide-alkyne cycloaddition reaction	Park No Joong et al.	Green Chemistry	21	2677
	Environment & Sustainable Resources Research Center	3D printable non-isocyanate polyurethanes with tunable material properties	Park, Ji Hoon et al.	Polymer Chemistry	10	4665
	Environment & Sustainable Resources Research Center	Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride	Park, Ji Hoon et al.	Biochemical Engineering Journal	143	141
	Environment & Sustainable Resources Research Center	A Crack Repair Patch Based on Acrylated Epoxidized Soybean Oil	SHIN, JIHOON et al.	Applied Surface Science	476	276
	Environment & Sustainable Resources Research Center	thermal conductivity enhancement in electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/cellulose nanocrystal composite nanofibers	SHIN, JIHOON et al.	Scientific Reports	9	3026
	Environment & Sustainable Resources Research Center	Metal-organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction	Youngkook Kwon et al.	Electrochimical Acta	306	28
	C1 Gas & Carbon Convergent Research Center	Paraffin-enabled graphene transfer	Hong Jin Yong et al.	Nature Communications	10	867
Department	C1 Gas & Carbon Convergent Research Center	Activated carbon fibers for toxic gas removal based on electrical investigation: Mechanistic study of p-type/n-type junction structures	Im Ji Sun et al.	Scientific Reports	9	14458
of Carbon Valorization	C1 Gas & Carbon Convergent Research Center	Correlation verification of process factors and harmful gas adsorption properties for optimization of physical activation parameters of PAN-based carbon fibers	Im Ji Sun et al.	J. Ind. Eng. Chem.	80	152
	C1 Gas & Carbon Convergent Research Center	Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch	Im Ji Sun et al.	Carbon Letters	29	203
	C1 Gas & Carbon Convergent Research Center	High-performance all-solid-state hybrid supercapacitors based on surface-embedded bimetallic oxide nanograins loaded onto carbon nanofiber and activated carbon	Im Ji Sun et al.	Electrochimical Acta	332	135494
	C1 Gas & Carbon Convergent Research Center	Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch	Im Ji Sun et al.	Carbon Letters	29	385
	C1 Gas & Carbon Convergent Research Center	Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs	Im Ji Sun et al.	J. Ind. Eng. Chem.	73	241
	C1 Gas & Carbon Convergent Research Center	Preparation of petroleum-based binder pitch for manufacturing thermally conductive carbon molded body and comparison with commercial coal-based binder pitch	Im Ji Sun et al.	Carbon Letters	-	-
	C1 Gas & Carbon Convergent Research Center	Preparation of pitch-based activated carbon with surface-treated fly ash for SO2 gas removal	Im Ji Sun et al.	Carbon Letters	-	-
	C1 Gas & Carbon Convergent Research Center	Bench-Scale Steam Reforming of Methane for Hydrogen Production	Jun Ki Won et al.	Catalysts	9	615
	C1 Gas & Carbon Convergent Research Center	Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas	Jun Ki Won et al.	J. of CO2 Utilization	34	293
	C1 Gas & Carbon Convergent Research Center	Higher alcohol synthesis from syngas over xerogel- derived Co-Cu-Al2O3 catalyst with an enhanced metal proximity	Jun Ki Won et al.	Molecular Catalysis	475	110481

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	C1 Gas & Carbon Convergent Research Center	Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol	Kim Yong Tae et al.	Applied Energy	252	113482
	C1 Gas & Carbon Convergent Research Center	Nonoxidative direct conversion of methane on silica-based iron catalysts: effect of catalytic surface	Kim Yong Tae et al.	ACS Catalysis	9	7984
	C1 Gas & Carbon Convergent Research Center	Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts	Kim Yong Tae et al.	Green Chemistry	21	3715
	C1 Gas & Carbon Convergent Research Center	Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion	Kwak Geun Jae et al.	ACS Catalysis	9	2880
	C1 Gas & Carbon Convergent Research Center	Optimization-based assessment framework for carbon utilization strategies: Energy production from coke oven gas	Kwak Geun Jae et al.	Energy Conversion and Management	187	1
	C1 Gas & Carbon Convergent Research Center	Study on CH4 dry reforming process by high power inductively coupled plasma torch at atmospheric pressure	Kwak Geun Jae et al.	Current Applied Physics	20	196
	C1 Gas & Carbon Convergent Research Center	Techno-economic evaluation of the integrated polygeneration system of methanol, power and heat production from coke oven gas	Kwak Geun Jae et al.	Energy Conversion and Management	182	240
	C1 Gas & Carbon Convergent Research Center	A review on the Mo-precursors for catalytic hydroconversion of heavy oil	Lee Chul Wee et al.	J. Ind. Eng. Chem.	76	1
	C1 Gas & Carbon Convergent Research Center	Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene	Lee Chul Wee et al.	Fuel	235	677
	C1 Gas & Carbon Convergent Research Center	Synthesis of noble molybdenum and tungsten complexes for hydrocracking catalyst of heavy oil	Lee Chul Wee et al.	J. Ind. Eng. Chem.	72	408
Department of Carbon Valorization	C1 Gas & Carbon Convergent Research Center	Exfoliated graphene nanosheets as high-power anodes for lithium-ion batteries	Lee Jea Uk et al.	Carbon Letters	29	81
	C1 Gas & Carbon Convergent Research Center	Highly stretchable fiber transistors with all- stretchable electronic components and graphene hybrid electrodes	Lee Jea Uk et al.	Organic Electronics	69	302
	C1 Gas & Carbon Convergent Research Center	Mass-Produced Electorchemically Exfoliated Grapene for Untrahigh Thermally Conductive Paper Using a Multimetal Electrode System	Lee Jea Uk et al.	ADVANCED MATERIALS INTEFACES	6	190009
	C1 Gas & Carbon Convergent Research Center	Preparation of electrochemically exfoliated graphene sheets using DC switching voltages	Lee Jea Uk et al.	Carbon Letters	-	-
	C1 Gas & Carbon Convergent Research Center	CFD modeling of a compact reactor for methanol synthesis: Maximizing productivity with increased thermal controllability	Lee Yun Jo et al.	International J. of Heat and Mass Transfer	145	118776
	C1 Gas & Carbon Convergent Research Center	Design of highly efficient adsorbents for removal of gaseous methyl iodide	Lee Yun Jo et al.	Chemical Engineering J.	373	1003
	C1 Gas & Carbon Convergent Research Center	Chemically Mofified Chitosan as a Biopolymer Support in Copper-catalyzed ipso-Hydrxylation of Arylboronic Acids in Water	Park Soo Youl et al.	Bull. Korean Chem. Soc.	40	465
	C1 Gas & Carbon Convergent Research Center	Effect of the pretreated pyrolysis fuel oil: coal tar pitch ratio on the spinnability and oxidation properties of isotropic pitch precursors and the mechanical properties of derived carbon fibers	Young-Pyo Jeon et al.	Carbon Letters	29	193
	C1 Gas & Carbon Convergent Research Center	Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis	Young-Pyo Jeon et al.	Carbon Letters	29	307
	C1 Gas & Carbon Convergent Research Center	Preparation of petroleum impregnating pitches from pyrolysis fuel oil using two-step heat treatments	Young-Pyo Jeon et al.	Carbon Letters	29	369
	C1 Gas & Carbon Convergent Research Center	Shortening Stabilization Time Using Pressurized Air Flow in Manufacturing Mesophase Pitch-Based Carbon Fiber	Young-Pyo Jeon et al.	Polymers	11	1911

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Process Design & Development Research Center	Dehydration of Bioethanol to Ethylene over H-ZSM-5 Catalysts: A Scale-Up Study	Chae Ho Jeong et al.	Catalysts	9	186
	Process Design & Development Research Center	Effect of Metal Oxide-Support Interactions on Ethylene Oligomerization over Nickel Oxide/Silica- Alumina Catalysts	Chae Ho Jeong et al.	Catalysts	9	933
	Process Design & Development Research Center	Effect of Structure-Controlled Ruthenium Oxide by Nanocasting in Electrocatalytic Oxygen and Chlorine Evolution Reactions in Acidic Conditions	Chae Ho Jeong et al.	Catalysts	9	549
-	Process Design & Development Research Center	Effect of Direct Reduction Treatment on Pt–Sn/Al2O3 Catalyst for Propane Dehydrogenation	Jeong-Rang Kim et al.	Catalysts	9	446
	Process Design & Development Research Center	Ligand Effect of Shape-Controlled β-Palladium Hydride Nanocrystals on Liquid-Fuel Oxidation Reactions	Jeong-Rang Kim et al.	CHEMISTRY OF MATERIALS	31	5663
	Process Design & Development Research Center	Formation of ordered macroporous ZnFe204 anode materials for highly reversible lithium storage	Kim Youngmin et al.	Chemical Engineering J.	372	363
	Thin Film Materials Research Center	Influence of Bi Excess on the Structural and Morphological Properties of Bi0.5K0.5TiO3 Synthesized by Using the Hydrothermal Method and Its Nanogenerator Properties	An Ki-Seok et al.	J. of the Korean Physical Society	74	1027
	Thin Film Materials Research Center	Synthesis of Mo2C and W2C nanoparticles electrocatalysts for the efficient hydrogen evolution reaction in alkali and acid electrolytes	An Ki-Seok et al.	Frontiers in Chemistry	7	716
	Thin Film Materials Research Center	Lubricant-Added Conductive Composite for Direct Writing of a Stretchable Electrode	Choi Young Min et al.	ACS Appl. Mater. Interfaces	11	48459
	Thin Film Materials Research Center	Printable Thick Copper Conductors from Optically Modulated Multidimensional Particle Mixtures	Choi Young Min et al.	ACS Appl. Mater. Interfaces	11	20134
	Thin Film Materials Research Center	Three-dimensionally printed pressure sensor arrays from hysteresis-less stretchable piezoresistive composites	Choi Young Min et al.	RCS Advances	9	39993
	Thin Film Materials Research Center	Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes	Choi Young Min et al.	ACS Appl. Mater. Interfaces	11	12622
Department of Information and Electronics Materials	Thin Film Materials Research Center	High-Performance Thin-Film Transistors of Quaternary Indium-Tin Oxide Films Grown by Atomic Layer Deposition	CHUNG, TAEK-MO et al.	ACS Appl. Mater. Interfaces	11	14892
	Thin Film Materials Research Center	Phase-controlled SnO2 and SnO growth by atomic layer deposition using Bis(N-ethoxy-2,2-dimethyl propanamido)tin precursor	CHUNG, TAEK-MO et al.	Ceramics International	45	5124
	Thin Film Materials Research Center	SnO-decorated TiO2 nanoparticle with enhanced photocatalytic performance for methylene blue degradation	CHUNG, TAEK-MO et al.	Applied Surface Science	480	1089
	Thin Film Materials Research Center	Atomic Layer Deposition of Nanocrystalline-As- Deposited (GeTe)x(Sb2Te3)1–x Films for Endurable Phase Change Memory	Eom Taeyong et al.	CHEMISTRY OF MATERIALS	31	8752
	Thin Film Materials Research Center	Effect of Electrode Material on the Crystallization of GeTe Grown by Atomic Layer Deposition for Phase Change Random Access Memory	Eom Taeyong et al.	Micromachines	10	281
	Thin Film Materials Research Center	A synergistic combination of zinc oxide nanowires array with dual-functional zeolitic imidazolate framework-8 for hybrid nanomaterials-based gas sensors	Jung Ha Kyun et al.	Composites Part B: Engineering	180	107552
	Thin Film Materials Research Center	Amplifying gas sensor performance by embedding a cellulose-based buffer layer in organic transistors	Jung Ha Kyun et al.	J. of Materials Chemistry C	7	14504

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Thin Film Materials Research Center	An eco-friendly cellulose acetate chemical sorbent for hazardous volatile organic liquid spill: a perfect material to solve the issue of evaporating hazards	Jung Ha Kyun et al.	Cellulose	26	2587
	Thin Film Materials Research Center	Complementary dual channel gas sensor devices based on a role-allocated ZnO-graphene hybrid heterostructure	Jung Ha Kyun et al.	ACS Appl. Mater. Interfaces	11	16830
	Thin Film Materials Research Center	Foldable and water-resist electrodes based on carbon nanotubes/methyl cellulose hybrid conducting papers	Jung Ha Kyun et al.	Composites Part B: Engineering	160	512
	Thin Film Materials Research Center	Superb pseudocapacitance observed from eco- friendly multi-dimensional quaternary composite electrode based on Ce and Cu oxides and sulfides	Jung Ha Kyun et al.	Ceramics International	45	11114
	Thin Film Materials Research Center	Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/ Thermoplastic Polyurethane Nanocomposites	Jung Sung Mook et al.	Materials	12	2613
	Thin Film Materials Research Center	A facile synthetic route to tungsten diselenide using a new precursor containing a long alkyl chain cation for multifunctional electronic and optoelectronic applications	Kim Chang Gyoun et al.	RCS Advances	9	6169
	Thin Film Materials Research Center	New red-emitting phosphor RbxK3-xSiF7: Mn4+{x= 0,1,2,3}: DFT predictions and synthesis	Kim Chang Hae et al.	RCS Advances	9	39589
	Thin Film Materials Research Center	Organic solvent-assisted synthesis of the K3SiF7:Mn4+ red phosphor with improved morphology and stability	Kim Chang Hae et al.	J. of Materials Chemistry C	7	15014
	Thin Film Materials Research Center	Fully "Erase-free" Multi-Bit Operation in Hf02- Based Resistive Switching Device	Kim Gun Hwan et al.	ACS Appl. Mater. Interfaces	11	8234
Department of Information	Thin Film Materials Research Center	Positive effects of a Schottky-type diode on unidirectional resistive switching devices	Kim Gun Hwan et al.	Applied Physics Letters	115	263502
and Electronics Materials	Thin Film Materials Research Center	Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells	Lee Seon Joo et al.	Energy & Environ. Sci.	12	958
	Thin Film Materials Research Center	Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells	Lee Seon Joo et al.	ADVANCED FUNCTIONAL MATERIALS	29	1900455
	Thin Film Materials Research Center	Attachable piezoelectric nanogenerators using collision-induced strain of vertically grown hollow MoS2 nanoflakes	Lee Sun Sook et al.	Nanotechnology	30	335402
	Thin Film Materials Research Center	Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS2 with enhanced activity for hydrogen evolution catalysis	Lee Sun Sook et al.	J. of Materials Chemistry A	7	3563
	Thin Film Materials Research Center	High energy electron beam stimulated nanowelding of silver nanowire networks encapsulated with graphene for flexible and transparent electrodes	Lee Sun Sook et al.	Scientific Reports	9	9376
	Thin Film Materials Research Center	Highly efficient and flexible photodetector based on MoS2-ZnO heterostructures	Lee Sun Sook et al.	RCS Advances	9	19707
	Thin Film Materials Research Center	Lattice Strain Formation through Spin-Coupled Shells of MoS2 on Mo2C for Bifunctional Oxygen Reduction and Oxygen Evolution Reaction Electrocatalysts	Lee Sun Sook et al.	ADVANCED MATERIALS INTEFACES	6	1900948
	Thin Film Materials Research Center	Solution-processable method for producing high- quality reduced graphene oxide displaying self- catalytic healing	Lee Sun Sook et al.	Carbon	141	774
	Thin Film Materials Research Center	Controlling Ion-Exchange Balance and Morphology in Cation Exchange from Cu3-xP Nanoplatelets into InP Crystals	Lee Young Kuk et al.	CHEMISTRY OF MATERIALS	31	1990
	Thin Film Materials Research Center	Freely Shapable and 3D Porous Carbon Nanotube Foam using Rapid Solvent Evaporation Method for Flexible Thermoelectric Power Generators	Lee Young Kuk et al.	Advanced Energy Materials	9	1900914

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Thin Film Materials Research Center	Selectivity Modulated by Surface Ligands on Cu20/Ti02 Catalysts for Gas-Phase Photocatalytic Reduction of Carbon Dioxide	Lee Young Kuk et al.	J. Phys. Chem. C	123	29184
	Thin Film Materials Research Center	Direct synthesis of a self-assembled WSe2/ MoS2 heterostructure array and its optoelectrical properties	Lim Jongsun et al.	Advanced Materials	31	1904194
	Thin Film Materials Research Center	Fabrication of vetical van der Waals gap array using single-and multi-layer graphene	Song Wooseok et al.	Nanotechnology	31	35304
	Advanced Functional Polymers Research Center	New photosensitive poly(amic acid ester) with BTDA-BBPA unit: synthesis, photopatterning, and imidization	Jinsoo Kim et al.	Polymer(Korea)	43	268
	Advanced Functional Polymers Research Center	Synthesis of Sulfur-Citral Copolymers and Their Application to Cathode Materials for Lithium-Sulfur Batteries	Kim Yong Seok et al.	Polymer(Korea)	43	282
	Advanced Functional Polymers Research Center	3D hierarchical scaffolds enabled by a post- patternable, reconfigurable, and biocompatible 2D vitrimer film for tissue engineering applications	Kim Yong-Seok et al.	J. of Materials Chemistry B	7	3341
	Advanced Functional Polymers Research Center	Selective growth of uniform single-layer graphene on Cu foil and fabrication of damage-free field effect transistor combining with direct transfer	Park, Hyunjin et al.	J. Vacuum Sci. Tech. B	37	41207
	Advanced Functional Polymers Research Center	Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance	Won Jong Chan et al.	Nanomaterials	11	1612
	Advanced Functional Polymers Research Center	Porous boron nitride/polyimide composite films with high thermal diffusivity and low dielectric properties via high internal phase Pickering emulsion method	Won Jong Chan et al.	J. Ind. Eng. Chem.	82	173
Department of Information and Electronics Materials	Advanced Functional Polymers Research Center	The true liquid crystal phases of 2D polymeric carbon nitride and macroscopic assembled fibers	Won Jong Chan et al.	Materials Horizons	6	1726
	Advanced Functional Polymers Research Center	Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions	Yoo Young Jae et al.	Polymers	11	484
	Advanced Functional Polymers Research Center	Synthesis of Poly(phenylene polysulfide) Networks from Elemental Sulfur and p-Diiodobenzene for Stretchable, Healable, and Reprocessable Infrared Optical Applications	Yoo Young Jae et al.	ACS Macro Letters	8	912
	Advanced Functional Polymers Research Center	Tailoring biomimetic polymer networks towards an unprecedented combination of versatile mechanical characteristics	Yoo Young Jae et al.	RCS Advances	9	15780
	Interface Materials & Chemical Engineering Research Center	Fluorinated Titania Nanoparticle-Induced Piezoelectric Phase Transition of PVDF	Park In Joon et al.	Langmuir	35	8816
	Interface Materials & Chemical Engineering Research Center	Preparation and electroactive phase adjustment of Ag-doped poly(vinylidene fluoride) (PVDF) films	Park In Joon et al.	RCS Advances	9	40286
	Interface Materials & Chemical Engineering Research Center	Amine-Based Interfacial Engineering in Solution- Processed Organic and Perovskite Solar Cells	So Won Wook et al.	ACS Appl. Mater. Interfaces	11	16785
	Interface Materials & Chemical Engineering Research Center	Enhanced photostability in polymer solar cells achieved with modified electron transport layer	So Won Wook et al.	Thin Solid Films	669	42
	Interface Materials & Chemical Engineering Research Center	High-Efficiency Nonfullerene Polymer Solar Cells with Band gap and Absorption Tunable Donor/ Acceptor Random Copolymers	So Won Wook et al.	ACS Appl. Mater. Interfaces	11	2189
	Interface Materials & Chemical Engineering Research Center	Simple and Versatile Non-Fullerene Acceptor Based on Benzothiadiazole and Rhodanine for Organic Solar Cells	So Won Wook et al.	ACS Appl. Mater. Interfaces	11	30098

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Interface Materials & Chemical Engineering Research Center	Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4%	So Won Wook et al.	RCS Advances	9	20733
Department of Information and Electronics Materials	Interface Materials & Chemical Engineering Research Center	Impact of trifluoromethyl groups on the control of surface and optical properties of poly(methyl methacrylate)	Sohn, Eun-Ho et al.	J. of Fluorine Chemistry	219	92
	Interface Materials and Chemical Engineering Research Center	Solution-Processable Photonic Inks of Mie- Resonant Hollow Carbon-Silica Nanospheres	Ha Jong Wook et al.	small	15	1900931
	Energy Materials Research Center	Flexible and free-standing thermoelectric devices prepared from poly(vinylidene fluoride-co- hexafluoropropylene)/graphite nanoplatelet/ single-walled carbon nanotube composite films	CHO SONG YUN et al.	Materials Science and Engineering: B	243	199
	Energy Materials Research Center	Alkylthiazole-based semicrystalline polymer donors for fullerene-free organic solar cells	Eom Seung Hun et al.	Polymer Chemistry	10	4314
	Energy Materials Research Center	Ether-free polymeric anion exchange materials with extremely low vanadium ion permeability and outstanding cell performance for vanadium redox flow battery (VRFB) application	Hong Young TaiK et al.	J. of Power Source	413	158
	Energy Materials Research Center	External reinforcement of hydrocarbon membranes by a three-dimensional interlocking interface for mechanically durable polymer electrolyte membrane fuel cells	Hong Young TaiK et al.	J. of Power Source	415	44
	Energy Materials Research Center	Reinforced anion exchange membrane based on thermal cross-linking method with outstanding cell performance for reverse electrodialysis	Hong Young TaiK et al.	RCS Advances	9	27500
	Energy Materials Research Center	Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition	Hong Young TaiK et al.	International J. of Hydrogen Energy	44	2340
	Energy Materials Research Center	Formation of toroidal Li2O2 in non-aqueous Li-O2 batteries with Mo2CTx MXene/CNT composite	Kang Yongku et al.	RCS Advances	9	41120
Department of Convergent Energy	Energy Materials Research Center	Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries	Kang Yongku et al.	Electrochimical Acta	299	27
Materials	Energy Materials Research Center	Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li-02 batteries	Kang Yongku et al.	Carbon	154	448
	Energy Materials Research Center	Rational design of electrochemically active polymorphic MnOx/rGO composites for Li+- rechargeable battery electrodes	Kang Yongku et al.	Ceramics International	45	9522
	Energy Materials Research Center	Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application	Kim Tae Ho et al.	J. of Membrane Science	579	70
	Energy Materials Research Center	Nanofiber Cellulose-Incorporated Nanomesh Graphene-Carbon Nanotube Buckypaper and Ionic Liquid-Based Solid Polymer Electrolyte for Flexible Supercapacitors	Kim Tae Ho et al.	Energy Technology	7	1900014
	Energy Materials Research Center	Facile Functionalization of Poly(Dimethylsiloxane) Elastomer by Varying Content of Hydridosilyl Groups in a Crosslinker	Kim, Dong Wook et al.	Polymers	11	1842
	Energy Materials Research Center	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells	Lee Jaemin et al.	Advanced Energy Materials	9	1902740
	Energy Materials Research Center	Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry	Lee Jaemin et al.	Nano Letters	19	5437
	Energy Materials Research Center	Structural Effect of the Hydrophobic Block on the Chemical Stability of Ion-Conducting Multiblock Copolymers for Flow Battery	Lee Jang Yong et al.	ACS Sustainable Chem. Eng.	7	17088

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Energy Materials Research Center	Enhanced efficiency and stability of PTB7-Th- based multi-non-fullerene solar cells enabled by the working mechanism of the coexisting alloy-like structure and energy transfer model	Lee Jong Cheol et al.	J. of Materials Chemistry A	7	22044
	Energy Materials Research Center	High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives	Lee Jong Cheol et al.	J. Ind. Eng. Chem.	80	265
	Energy Materials Research Center	Room Temperature Processed Highly Efficient Large-Area Polymer Solar Cells Achieved with Molecular Engineering of copolymers	Lee Jong Cheol et al.	Advanced Energy Materials	9	1900168
	Energy Materials Research Center	Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion	Park, Joung Guy et al.	Scientific Reports	9	1834
	Energy Materials Research Center	Achieving Long-Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h	Seo Jang Won et al.	Advanced Science	6	1900528
	Energy Materials Research Center	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)	Seo Jang Won et al.	Nature	567	511
	Energy Materials Research Center	Gravure-Printed Flexible Perovskite Solar Cells: Toward Roll-to-Roll Manufacturing	Seo Jang Won et al.	Advanced Science	6	1802094
	Energy Materials Research Center	Thermally activated, light-induced electron- spinresonance spin density reflected by photocurrents in a perovskite solar cell	Seo Jang Won et al.	Applied Physics Letters	114	13903
	Energy Materials Research Center	An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss	Shin Seong Sik et al.	Energy & Environ. Sci.	12	2192
Department of Convergent Energy Materials	Energy Materials Research Center	Improving the Photovoltaic Performance and Mechanical Stability of Flexible All-Polymer Solar Cells via Tailoring Intermolecular Interactions	Shin Won Suk et al.	CHEMISTRY OF MATERIALS	31	5047
	Energy Materials Research Center	Simple Bithiophene-Rhodanine-Based Small Molecule Acceptor for Use in Additive-Free Nonfullerene OPVs with Low Energy Loss of 0.51 eV	Shin Won Suk et al.	Advanced Energy Materials	9	1804021
	Energy Materials Research Center	Effect of hydrophilic 2-D layered minerals in cathode catalyst layers on performance of polymer electrolyte membrane fuel cells	So Soonyong et al.	J. Ind. Eng. Chem.	78	455
	Energy Materials Research Center	Functional polymers for growth and stabilization of CsPbBr3 perovskite nanoparticles	So Soonyong et al.	Chemical Communications	55	1833
	Energy Materials Research Center	Excellent carrier transport materials produced by controlled molecular stacking and their application in flexible organic electronic devices	Song ChangEun et al.	J. of Materials Chemistry A	7	14790
	Energy Materials Research Center	The 3D Morphological Stability of P3HT Nanowire- Based Bulk Heterojunction Thin Films against Light Irradiation Quantitatively Resolved by TEM Tomography	Song ChangEun et al.	J. of Materials Chemistry A	7	2027
	Energy Materials Research Center	Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery	Yoon Sang Jun et al.	Energy	172	26
	Energy Materials Research Center	Comparison of Optical and Electrical Properties of Different Hole-Transporting Materials for Solution- Processable Organic Light-Emitting Diodes	Yoon, Sung Cheol et al.	J. Nanosci. Nanotech.	19	4578
	Energy Materials Research Center	Enhancing device performance of inverted organic solar cells with Sn02/CscC03 as dual electron transport layers	Yoon, Sung Cheol et al.	Organic Electronics	68	85
	Energy Materials Research Center	Poly(N-isopropylacrylamide-co-methacrylic acid) Interfacial Layer for Efficient and Stable Inverted Organic Solar Cells	Yoon, Sung Cheol et al.	J. Phys. Chem. C	123	2755

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Data Convergence Drug Research Center	Development and structure-activity relationship study of SHP2 inhibitor containing 3,4,6-trihydroxy- 5-oxo-5H-benzo[7]annulene	Chae, Chong Hak et al.	Bioorg. Med. Chem. Lett.	30	126756
	Data Convergence Drug Research Center	Discovery of 1,2-Naphthoquinone Derivatives as Potent p53-MDM2 Interaction Inhibitors	Chae, Chong Hak et al.	Bull. Korean Chem. Soc.	40	1236
	Data Convergence Drug Research Center	Identification of a novel turn-on albumin binding small-molecule bioprobe	Chae, Chong Hak et al.	Dyes and Pigments	171	107720
	Data Convergence Drug Research Center	Identification of TRE-130 as reversible pan-EGFR mutants inhibitor while sparing EGFR wild-type activity	Chae, Chong Hak et al.	Bull. Korean Chem. Soc.	40	1222
	Data Convergence Drug Research Center	A Novel Cereblon Modulator for Targeted Protein Degradation	Cho Sung Yun et al.	European J. Med. Chem.	166	65
	Data Convergence Drug Research Center	Beauvetetraones A—C, phomaligadione-derived polyketide dimers from the entomopathogenic fungus, Beauveria bassiana	Choi Sang Un et al.	Organic Chemistry Frontiers	6	162
	Data Convergence Drug Research Center	Cytotoxic Withanolides from the Roots of Indian Ginseng (Withania somnifera)	Choi Sang Un et al.	J. Nat. Prod.	82	765
	Data Convergence Drug Research Center	Macrocyclic Trichothecene Mycotoxins from a Deadly Poisonous Mushroom, Podostroma cornu- damae	Choi Sang Un et al.	J. Nat. Prod.	82	122
	Data Convergence Drug Research Center	Radiosensitizing Effect of Novel Phenylpyrimidine Derivatives on Human Lung Cancer Cells via Cell Cycle Perturbation	Choi Sang Un et al.	J. Pharmacol. Exp. Ther.	370	514
	Data Convergence Drug Research Center	Securinega Alkaloids from the Twigs of Securinega suffruticosa and Their Biological Activities	Choi Sang Un et al.	J. Nat. Prod.	82	1345
Department of Drug Discovery	Data Convergence Drug Research Center	Disordered region of cereblon is required for efficient degradation by proteolysis-targeting chimera	Ha Jae Du et al.	Scientific Reports	9	19654
	Data Convergence Drug Research Center	Efficient and rapid synthesis of N-substituted isoquinolin-1-ones under mild conditions: Facile access to doryanine derivatives	Hwang Jong Yeon et al.	Tetrahedron Letters	60	1259
	Data Convergence Drug Research Center	Lewis acid-mediated cross-coupling reaction of 7-azaindoles and aldehydes: Cytotoxic evaluation of C3-linked bis-7-azaindoles	Hwang Jong Yeon et al.	Tetrahedron Letters	60	150974
	Data Convergence Drug Research Center	Deep learning enables high-quality and high- throughput prediction of enzyme commission numbers	JAE YONG RYU et al.	PNAS	116	13996
	Data Convergence Drug Research Center	Expanded synthetic small regulatory RNA expression platforms for rapid andmultiplex gene expression knockdown	JAE YONG RYU et al.	Metabolic Engineering	54	180
	Data Convergence Drug Research Center	Catalytic Wacker-type Oxidations Using Visible Light Photoredox Catalysis	Kim Hyun Jin et al.	ChemCatChem	11	1889
	Data Convergence Drug Research Center	Photoredox/rhodium catalysis in C-H activation for the synthesis of nitrogen containing heterocycles	Kim Hyun Jin et al.	Organic Chemistry Frontiers	6	2319
	Data Convergence Drug Research Center	Recent Organic Transformations with Silver Carbonate as a Key External Base and Oxidant	Kim Hyun Jin et al.	Catalysts	9	1032
	Data Convergence Drug Research Center	Computational determination of hERGrelated- cardiotoxicity of drug candidates	Lee Byung Ho et al.	BMC Bioinformatics	20	250
	Data Convergence Drug Research Center	DITMD-induced mitotic defects and apoptosis in tumor cells by blocking the polo-box domain- dependent functions of polo-like kinase 1	Lee Byung Ho et al.	European J. Pharmacol.	847	113
	Data Convergence Drug Research Center	Icariin protects against radiation-induced mortality and damage in vitro and in vivo	Lee Byung Ho et al.	Int. J. Radiat. Biol.	95	1094

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Data Convergence Drug Research Center	Optimization study towards more potent thiazolidine-2,4-dione IKK- β modulator	Lee Byung Ho et al.	Bioorganic Chemistry	92	103261
	Data Convergence Drug Research Center	The positive correlation of TIPRL with LC3 and CD133 contributes to cancer aggressiveness: potential biomarkers for early liver cancer	Lee Kwangho et al.	Scientific Reports	9	16802
	Data Convergence Drug Research Center	Differences in the molecular signatures of mucosal- associated invariant T cells and conventional T cells.	Lim Hwan Jung et al.	Scientific Reports	9	7094
	Data Convergence Drug Research Center	Structural assignment of the eno-keto tautomers of one-pot synthesized 4-hydroxyquinolines/4- quinolones	Lim Hwan Jung et al.	Organic Chemistry Frontiers	6	183
	Data Convergence Drug Research Center	Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2- Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide	Lim Hwan Jung et al.	Molecules	24	3451
	Data Convergence Drug Research Center	Discovery of Novel Imidazothiazole Derivatives as NF-KB Inhibitors	Oh Kwang-Seok et al.	Bull. Korean Chem. Soc.	40	1148
	Data Convergence Drug Research Center	Succinct syntheses of methopholine, (±)-homolaudanosine, and (±)-dysoxyline via metal- free one-pot double alkylation on 1-methyl-3,4- dihydroisoquinolines	Pilho Kim et al.	Bull. Korean Chem. Soc.	40	270
	Data Convergence Drug Research Center	A validated UPLC-MS/MS method for pharmacokinetic study ofinflachromene, a novel microglia inhibitor	Song Jin Sook et al.	J. Pharm. Biomed. Anal.	166	183
	Data Convergence Drug Research Center	Discovery of Novel Pyruvate Dehydrogenase Kinase 4 Inhibitors for Potential Oral Treatment of Metabolic Diseases	Song Jin Sook et al.	J. Med. Chem.	62	575
Department of Drug Discovery	Data Convergence Drug Research Center	Model-based pharmacokinetic and pharmacodynamic analysis for acute effects of a small molecule inhibitor of diacylglycerol acyltransferase-1 in the TallyHo/JngJ polygenic mouse	Song Jin Sook et al.	Xenobiotica	49	823
Di ug Discovery	Data Convergence Drug Research Center	Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model	Song Jin Sook et al.	Chemosphere	239	124751
	Data Convergence Drug Research Center	Superior gallstone dissolubility and safety of tert- amyl ethyl ether	Song Jin Sook et al.	World J. Gastroenterol.	25	5936
	Data Convergence Drug Research Center	Synthesis and SAR of 5-aryl-furan-2-carboxamide derivatives as potent urotensin-II receptor antagonists	Yi Kyu Yang et al.	Bioorg. Med. Chem. Lett.	29	577
	Data Convergence Drug Research Center	Anti-neuroinflammatory Effects of 12-Dehydrogingerdionein LPS-Activated Microglia through Inhibiting Akt/IKK/NF- _K B	Ryu Shi Yong et al.	Biomolecules and Therapeutics	27	92
	Data Convergence Drug Research Center	Licoflavonol Reduces Aβ Secretion by Increasing BACE1 Phosphorylation to Facilitate BACE1 Degradation	Ryu Shi Yong et al.	Mol. Nutr. Food Res.	63	1800474
	Data Convergence Drug Research Center	The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli	Ryu Shi Yong et al.	Biofouling	35	758
	Drug Discovery Platform Research Center	A NIR probe tracks and treats lung tumor initiating cells bytargeting HMOX2	BAE MYUNG-AE et al.	J. Am. Chem. Soc.	141	14673
	Drug Discovery Platform Research Center	Anti-inflammatory effect of a novel synthetic compound 1-((4-fluorophenyl)thio)isoquinoline in RAW264.7 macrophages and a zebrafish model	BAE MYUNG-AE et al.	Fish & Shellfish Immunology	87	395
	Drug Discovery Platform Research Center	Short-Term Consumption of Cuban Policosanol Lowers Aortic and Peripheral Blood Pressure and Ameliorates Serum Lipid Parameters in Healthy Korean Participants: Randomized, Double-Blinded, and Placebo-C	BAE MYUNG-AE et al.	Int. J. Environ. Res. Public Health	16	809
	Drug Discovery Platform Research Center	Characterization of the Anti-Cancer Activity of the Probiotic Bacterium Lactobacillus fermentum using 2D vs 3D culture in Colorectal Cancer Cells	Byumseok Koh et al.	Biomolecules	9	557

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Drug Discovery Platform Research Center	The GTP binding activity of transglutaminase 2 promotes bone metastasis of breast cancer cells by downregulating microRNA-205.	Chang Hoon Lee et al.	Am J Cancer Res.	9	597
	Drug Discovery Platform Research Center	Transglutaminase 2 induces intrinsic EGFR-TKI resistance in NSCLC harboring EGFR sensitive mutations.	Chang Hoon Lee et al.	Am J Cancer Res.	9	1708
	Drug Discovery Platform Research Center	A Two-Photon Probe for TNF-α. Assessment of the Transmembrane TNF-α Level in Human Colon Tissue by Two-Photon Microscopy	Heo, Jung Nyoung et al.	Anal. Chem.	91	15769
	Drug Discovery Platform Research Center	αVβ3-Targeted Delivery of Camptothecin- Encapsulated Carbon Nanotube-Cyclic RGD in 2D and 3D Cancer Cell Culture	Heo, Jung Nyoung et al.	J. Pharm. Sci.	108	3704
	Drug Discovery Platform Research Center	Development of in vitro three-dimensional co- culture system for metabolic syndrome therapeutic agents	Jung Won Hoon et al.	Diabetes Obesity & Metabolism	21	1146
	Drug Discovery Platform Research Center	Protective effect of a novel selective 11β-HSD1 inhibitor on eye ischemia-reperfusion induced glaucoma	Jung Won Hoon et al.	Biochemical Pharmacology	169	113632
	Drug Discovery Platform Research Center	Efficacy and safety of a novel topical agent for gallstone dissolution: 2-methoxy-6-methylpyridine	Kang Seung Kyu et al.	J. Transl. Med.	17	195
December of	Drug Discovery Platform Research Center	Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3-dimensional culture of colorectal cancer cells.	Kim Hi Youn et al.	Oncology Letters	18	4858
Department of Drug Discovery	Drug Discovery Platform Research Center	iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI- MS/MS	Kim, Ki Young et al.	Scientific Reports	9	16746
	Drug Discovery Platform Research Center	Long-term stability monitoring of printed proteins	kwang-Rok Kim et al.	ACS Omega	4	15134
	Drug Discovery Platform Research Center	χ -Functionalization of α_{λ} -Unsaturated Nitriles under Mild Conditions: Versatile Synthesis of 4-Aryl-2-Bromopyridines	Kwan-Young Jung et al.	Adv. Synth. Catal.	361	5458
	Drug Discovery Platform Research Center	Antioxidant and anti-inflammatory effects of an ethanol fraction from the Schisandra chinensis baillon hot water extract fermented using Lactobacilius paracasei subsp. tolerans	Lee Byung Hoi et al.	Food Sci. Biotechnol.	28	1759
	Drug Discovery Platform Research Center	Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives	Seong Hwan KIM et al.	Bioorg. Med. Chem. Lett.	29	1350
	Drug Discovery Platform Research Center	Homoharringtonine induces apoptosis in human colorectal carcinoma HCT116 cells via downregulation of Wnt/β-catenin signaling cascade	Seong Hwan KIM et al.	Bull. Korean Chem. Soc.	40	196
	Drug Discovery Platform Research Center	Idelalisib inhibits osteoclast differentiation and preosteoclast migration	Seong Hwan KIM et al.	Achives of Pharmacal Research	42	712
	Drug Discovery Platform Research Center	PLGA Microsphere Addition to 1-Hydroxy-2- napthoic Acid Enhances the Sustained Release of Escitalopram	Shin Byung-Chul et al.	Bull. Korean Chem. Soc.	40	791
	Infectious Diseases Therapeutic Research Center	Comparison of Plasma and Brain Exposure Levels of Bis-pyridinium Oximes KR-22839 and KR-26256 with Asoxime and Obidoxime in Mice	Jung Young Sik et al.	Bull. Korean Chem. Soc.	40	5
Department of nfectious Diseases Research	Infectious Diseases Therapeutic Research Center	Pharmacokinetics of K117 and K127, two novel antidote candidates to treat Tabun poisoning	Jung Young Sik et al.	Chemico-Biological Interactions	310	108737
	Infectious Diseases Therapeutic Research	A multi-substrate screening approach for the identification of a broadly applicable Diels-Alder	Kim Hye Jin et al.	Nature Communications	10	770

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Infectious Diseases Therapeutic Research Center	Chemical constituents and anti-influenza viral activity of the leaves of Vietnamese plant Elaeocarpus tonkinensis	Kim Mee hyein et al.	Rec. Nat. Prod.	13	71
	Infectious Diseases Therapeutic Research Center	Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions	Kim Mee hyein et al.	Molecules and Cells	42	495
	Infectious Diseases Therapeutic Research Center	Neutralization of acidic intracellular vesicles by niclosamide inhibits multiple steps of the dengue virus life cycle in vitro	Kim Mee hyein et al.	Scientific Reports	9	8682
Department of Infectious Diseases	Infectious Diseases Therapeutic Research Center	Copper-Catalyzed 1,2-Bistrifluoromethylation of Terminal Alkenes	Lee Hyuk et al.	Adv. Synth. Catal.	361	2136
Research	Infectious Diseases Therapeutic Research Center	Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis	Lee Joo Youn et al.	Cell Death & Disease	10	187
	Infectious Diseases Therapeutic Research Center	Structural and molecular modelling studies of antimelanogenic piper-amide TRPM1 antagonists	Lee Joo Youn et al.	SAR QSAR Environ. Res.	30	195
	Infectious Diseases Therapeutic Research Center	Synthesis and Biological Evaluation of PF-543 Derivative	Lee Joo Youn et al.	Chem. Pharm. Bull.	67	599
	Infectious Diseases Therapeutic Research Center	Synthesis and Biological Evaluation of PF-543 Derivative Containing Aliphatic Side Chain	Lee Joo Youn et al.	Chem. Pharm. Bull.	67	599
	Eco-Friendly New Materials Research Center	ARS2 plays divers roles in DNA damage response, fungal development, and pathogenesis in the plant pathogenic fungus Fusarium graminearum	Choi Gyung Ja et al.	Front. Microbiol.	10	2326
	Eco-Friendly New Materials Research Center	Control of root-knot nematodes using Waltheria indica producing 4-quinolone alkaloids	Choi Gyung Ja et al.	Pest Management Science	75	2264
	Eco-Friendly New Materials Research Center	Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae	Choi Gyung Ja et al.	J. Agric. Food Chem.	67	7706
	Eco-Friendly New Materials Research Center	Physical localization of root-knot nematode (Meloidogyne incognita) resistance locus Me7 in pepper (Capsicum annuum)	Choi Gyung Ja et al.	Front. Plant Sci.	10	886
	Eco-Friendly New Materials Research Center	Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide	Choi Jung Sub et al.	PLOS ONE	14	e0222933
-	Eco-Friendly New Materials Research Center	Anti-cancer activity of the novel 2-hydroxydiarylamide derivatives IMD-0354 and KRT1853 through suppression of cancer cell invasion, proliferation, and survival mediated by TMPRSS4	Lee III Young et al.	Scientific Reports	9	10003
	Eco-Friendly New Materials Research Center	Transition-Metal-Catalyzed Ketone α -Alkylation and Alkenylation with Simple Alkenes and Alkynes through a Dual Activation Strategy	Lim Hee Nam et al.	Synlett	30	674
	Eco-Friendly New Materials Research Center	Phenylethylamides derived from bacterial secondary metabolites specifcally inhibit an insect serotonin receptor	Ryu jae Wook et al.	Scientific Reports	9	20358
	Eco-Friendly New Materials Research Center	Future and Challenges for hybrid upconversion nanosystems	Suh, Yung Doug et al.	Nature Photonics	13	828
	Eco-Friendly New Materials Research Center	Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications	Suh, Yung Doug et al.	Nanotoday	29	100797
	Eco-Friendly New Materials Research Center	SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics	Suh, Yung Doug et al.	Nanoscale	11	21724
	Eco-Friendly New Materials Research Center	Ultrathin yttrium fluoride nanostructures: controlled synthesis and polarized up-conversion emission property	Suh, Yung Doug et al.	J. of Materials Chemistry C	7	10918

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Center for Advanced Specialty Chemicals	Domino Palladium-Catalyzed Double Norbornene Insertion/Annulation Reaction: Expeditious Synthesis of OvercrowdedTetrasubstituted Olefins	Cho Deug Hee et al.	Organic Letters	21	4350
	Center for Advanced Specialty Chemicals	Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation	Jung Seo Hyun et al.	J. Ind. Eng. Chem.	80	802
	Center for Advanced Specialty Chemicals	Thermo-Tunable Colorimetric Detection of Mercury(II) lons Driven by Temperature-Dependent Assembly and Disassembly of a Block Copolymer	Kim Hye Jin et al.	Polymer Chemistry	10	4017
	Center for Advanced Specialty Chemicals	Dual Monitoring of Cracking and Healing in Self- healing Coatings Using Microcapsules Loaded with Two Fluorescent Dyes	Kim Jin Chul et al.	Molecules	24	1679
	Center for Advanced Specialty Chemicals	Environmentally Adaptable and Temperature- Selective Sel-Healing Polymers	Kim Jin Chul et al.	Macromolecular Rapid Communications	39	1800689
	Center for Advanced Specialty Chemicals	Thermally Reversible Polymer Networks for Scratch Resistance and Scratch Healing in Automotive Clear Coats	Kim Jin Chul et al.	Progress in Organic Coatings	127	37
	Center for Advanced Specialty Chemicals	Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors	Kong Ho Youl et al.	Organic Electronics	62	357
	Center for Advanced Specialty Chemicals	Effect of filler size on thermal properties of paraffin/silver nanoparticle composites	Lee Dong Koo et al.	Korean Journal of Chemical Engineering	36	1004
Department	Center for Advanced Specialty Chemicals	Metal-Free Room-Temperature Vulcanization of Silicones via Borane Hydrosilylation	Lee Sang Ho et al.	Macromolecules	52	7244
of Specialty Chemicals	Center for Advanced Specialty Chemicals	Metal-free Synthesis of Poly(silyl ethers) under Ambient Conditions	Lee Sang Ho et al.	Macromolecules	52	1993
	Center for Advanced Specialty Chemicals	Tailorable Degradation of pH-Responsive All- Polyether Micelles: Unveiling the Role of Monomer Structure and Hydrophilic-Hydrophobic Balance	Lee Sang Ho et al.	Macromolecules	52	5884
	Center for Advanced Specialty Chemicals	Efficient Fe2O3/C-g-C3N4 Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process	Lee Won Joo et al.	J. Phys. Chem. Sol.	130	93
	Center for Advanced Specialty Chemicals	Enhanced shear thickening of polystyrene- poly(acrylamide)	Lee Won Joo et al.	Colloid and Polymer Science	297	95
	Center for Advanced Specialty Chemicals	Metal- and halide-free solid-type multifunctional alkanolamines as catalysts for cycloaddition of CO2	Lim Choong Sun et al.	Korean Journal of Chemical Engineering	36	197
	Center for Advanced Specialty Chemicals	Morphology-Dependent Hole Transfer under Negligible HOMO Difference in Non-Fullerene Acceptor-Based Ternary Polymer Solar Cells	Lim, Bogyu et al.	ACS Appl. Mater. Interfaces	11	7208
	Center for Advanced Specialty Chemicals	A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes	Park Jong Mok et al.	Int. J. Biol. Macromol.	125	660
	Center for Advanced Specialty Chemicals	Polymer-based flexible NOx sensors with ppb-level detection at room temperature using breath-figure molding	Park Jong Mok et al.	Nanoscale	11	17709
	Center for Advanced Specialty Chemicals	Synthesis and Characterization of Novel TriaryImethane-Based Dyes for Thermally Stable Blue Color Filters	Park Jong Mok et al.	J. Nanosci. Nanotech.	19	4782

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Center for Advanced Specialty Chemicals	Metal- and halide-free catalysts supported on silica and their applications to CO2 cycloaddition reactions	SEO BONG KUK et al.	J. Ind. Eng. Chem.	75	202
	Center for Advanced Specialty Chemicals	Modified Epoxy Resin Synthesis from Phosphorus- Containing Polyol and Physical Changes Studies in the Synthesized Products	SEO BONG KUK et al.	Polymers	11	2116
Department of Specialty Chemicals	Center for Advanced Specialty Chemicals	Separation of Dicyclopentaidene in a C5 stream using a tetraethoxydimethyl disiloxane-derived silica composite membrane	SEO BONG KUK et al.	J. Ind. Eng. Chem.	79	79
	Center for Advanced Specialty Chemicals	Synthesis and Characterization of a Polyurethane Phase Separated to Nano Size in an Epoxy Polymer	SEO BONG KUK et al.	Coatings	9	319
	Center for Advanced Specialty Chemicals	New optimized triazene radical initiators for thermal polymerization	Young-IL Park et al.	J. Ind. Eng. Chem.	79	274
	Center for Bio-based Chemistry	Selective Alcohol on Dark Cathode by Photoelectrochemical CO2 Valorization and Their in-situ Characterization	Cha Hyun Gil et al.	ACS Energy Letters	4	1549
	Center for Bio-based Chemistry	Carbon Support with Tunable Porosity Prepared by Carbonizing Chitosan for Catalytic Oxidation of 5-Hydroxylmethylfurfural	Hwang Sung Yeon et al.	ACS Sustainable Chem. Eng.	7	3742
	Center for Bio-based Chemistry	Five different chitin nanomaterials from identical source with different advantageous functions and performances	Hwang Sung Yeon et al.	Carbohydrate Polymers	205	392
	Center for Bio-based Chemistry	lon-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor	Hwang Sung Yeon et al.	Chemical Engineering J.	371	452
	Center for Bio-based Chemistry	Influenza mimetic protein-polymer nanoparticles as antigen delivery vehicles to dendritic cells for cancer immunotherapy	Jae Kwang Song et al.	Nanoscale	11	13878
	Center for Bio-based Chemistry	Magnetically steerable Fe304-Ni2+-NTA- polystyrene nanoparticles for the immobilization and separation of his6-protein	Jae Kwang Song et al.	European Polymer Journal	112	524
	Center for Bio-based Chemistry	Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with fi lamentous nanoarchitecture in alkaline media	JONG GEON JEGAL et al.	Applied Catalysis B: Environmental	242	85
Department of Bio- based Chemicals	Center for Bio-based Chemistry	Study on the Synthetic Characteristics of Biomass- Derived Isosorbide-Based Poly (arylene ether ketone) s for Sustainable Super Engineering Plastic	JONG GEON JEGAL et al.	Molecules	24	2492
	Center for Bio-based Chemistry	Sustainable and recyclable super engineering thermoplastic from biorenewable monomer	JONG GEON JEGAL et al.	Nature Communications	10	2601
	Center for Bio-based Chemistry	Enhanced production of glutaric acid by NADH oxidase and GabD-reinforced bioconversion from l-lysine	Joo Jeong Chan et al.	Biotechnol. Bioeng.	116	333
	Center for Bio-based Chemistry	Enzymatic Synthesis of D-pipecolic Acid by Engineering the Substrate Specificity of Trypanosoma cruzi Proline Racemase and Its Molecular Docking Study	Joo Jeong Chan et al.	Biotechnol. Bioprocess Eng.	24	215
	Center for Bio-based Chemistry	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters	Kim Hee Taek et al.	Metabolic Engineering	58	47
	Center for Bio-based Chemistry	Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries	Kim Hee Taek et al.	Biotechnol. Bioprocess Eng.	24	48
	Center for Bio-based Chemistry	Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment	Kim Ho Yong et al.	Renewable Energy	130	952
	Center for Bio-based Chemistry	Statistical analysis of glucose production from Eucalyptus pellita with individual control of chemical constituents	Kim Ho Yong et al.	Renewable Energy	148	298

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Center for Bio-based Chemistry	Optimized Dental Implant Fixture Design for the Desirable Stress Distribution in the Surrounding Bone Region: A Biomechanical Analysis	Lee Jae Chang et al.	Materials	12	2749
	Center for Bio-based Chemistry	Protective Eects of Melon Extracts on Bone Strength, ineralization, and Metabolism in Rats with Ovariectomy-Induced Osteoporosis	Lee Jae Chang et al.	Antioxidants	8	306
	Center for Bio-based Chemistry	Toxicity of Zero- and One-Dimensional Carbon Nanomaterials	Lee Jae Chang et al.	Nanomaterials	9	1214
	Center for Bio-based Chemistry	mRNA Engineering for the Efficient Chaperone- Mediated Co-Translational Folding of Recombinant Proteins in Escherichia coli	Lee Ju Young et al.	Int. J. Mol. Sci.	20	3163
Department of Bio- based Chemicals	Center for Bio-based Chemistry	Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway	Lee Ju Young et al.	Metabolic Engineering	56	50
	Center for Bio-based Chemistry	Biological valorization of polyethylene terephthalate monomers for waste PET upcycling	Song Bong Keun et al.	ACS Sustainable Chem. Eng.	7	19396
	Center for Bio-based Chemistry	High-level conversion of L-lysine into cadaverine by Escherichia coli whole cell biocatalyst expressing Hafnia alvei L-lysine decarboxylase	Song Bong Keun et al.	Polymers	11	1184
	Center for Bio-based Chemistry	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical	Song Bong Keun et al.	Metabolic Engineering	51	99
	Center for Bio-based Chemistry	Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches	Yu Ju Hyun et al.	Biotechnology for Biofuels	12	138
	Chemical Data-driven Research Center	Atomic-level customization of 4 in. transition metal dichacogenide multilayer alloys for industrial applications	Chang Hyunju et al.	Advanced Materials	31	1901405
	Chemical Data-driven Research Center	Blocking of the 1T-to-2H phase transformation of chemically exfoliated transition metal disulfides by using a lattice lock"	Chang Hyunju et al.	Nano Energy	56	65
	Chemical Data-driven Research Center	Identifying Pb-free perovskites for solar cells by machine learning	Chang Hyunju et al.	npj Computational Materials	5	37
	Chemical Data-driven Research Center	Precious-Metal-Free Electrocatalysts for Activation of Hydrogen Evolution with Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene	Chang Hyunju et al.	ADVANCED FUNCTIONAL MATERIALS	29	1903443
Chemical Platform Technology	Chemical Data-driven Research Center	Scratch to sensitize: scratch-induced sensitivity enhancement in semiconductor thin film sensors	Chang Hyunju et al.	Nanoscale	11	15374
Division	Chemical Data-driven Research Center	Sulfated Tin Oxide as Highly Selective Catalyst for the Chlorination of Methane to Methyl Chloride	Chang Hyunju et al.	ACS Catalysis	9	9398
	Chemical Data-driven Research Center	Tunable piezoelectric nanogenerators using flexoelectricity of well-ordered hollow 2D MoS2 shells arrays for energy harvesting	Chang Hyunju et al.	Nano Energy	61	471
	Chemical Data-driven Research Center	Tuning graphene transistors through ad hoc electristatics induced by a nanometer-thick molecular underlayer	Chang Hyunju et al.	Nanoscale	11	19705
	Chemical Data-driven Research Center	Efficient Nanostructured Ti02/SnS Heterojunction Solar Cells	Im Jino et al.	Advanced Energy Materials	9	1901343
	Chemical Data-driven Research Center	Efficient Solar Cells Employing Light-Harvesting Sb0.67Bi0.33SI	Im Jino et al.	Advanced Materials	31	1808344

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Chemical Data-driven Research Center	Effect of Auger recombination induced by donor and acceptor states on luminescence properties of silicon quantum Dots/SiO2 multilayers	Jang Seung Hun et al.	J. Alloys. Compd.	801	568
	Drug Information Platform Center	Stereoselective synthesis of highly functionalized 5- and 6-membered aminocyclitols starting with a readily available 2-azetidinone	Lee Hyeon-Kyu et al.	J. Org. Chem.	84	4263
	Chemical Safety Research Center	Comparative analysis of urban road dust compositions in relation to their potential human health impacts	Eun-Ah Kim et al.	Environmental Pollution	255	113156
	Chemical Safety Research Center	Effective preconcentration of volatile organic compounds from aqueous solutions with polydimethylsiloxane-coated filter	Eun-Ah Kim et al.	Microchemical Journal	145	979
	Chemical Safety Research Center	Evaluation of Exposure Assessment Tools under REACH: Part I - Tier 1 Tools	Kim Jong Woon et al.	Ann. Work Expos. Heal.	63	218
	Chemical Safety Research Center	Evaluation of exposure assessment tools under REACH: Part II-Higher Tier tools	Kim Jong Woon et al.	Ann. Work Expos. Heal.	63	230
	Chemical Safety Research Center	Investigation of the Synergistic Toxicity of Binary Mixtures of Pesticides and Pharmaceuticals on Aliivibrio fischeri in Major River Basins in South Korea	Kim Jong Woon et al.	Int. J. Environ. Res. Public Health	16	208
	Chemical Safety Research Center	Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials	Kim Jong Woon et al.	Chemosphere	217	243
	Chemical Safety Research Center	A photo-functional electro-optic polyimide with excellent high- temperature stability	Yi Mihye et al.	Dyes and Pigments	163	547
	Chemical Safety Research Center	Flexible and stable organic field-effect transistors using low-temperature solution-processed polyimide gate dielectrics	Yi Mihye et al.	Organic Electronics	68	70
Chemical Platform Technology Division	Chemical Safety Research Center	Low-Temperature Solution-Processed Soluble Polyimide Gate Dielectrics: From Molecular-Level Design to Electrically Stable and Flexible Organic Transistors	Yi Mihye et al.	ACS Appl. Mater. Interfaces	11	45949
	Chemical Materials Solutions Center	Evaluation of the Degree of Dispersion of Polymer Nanocomposites (PNCs) Using Nonlinear Rheological Properties by FT-Rheology	Choi Woo Jin et al.	Macromolecules	52	8604
	Chemical Materials Solutions Center	Tensile properties of ultra-thin bisphenol-A polycarbonate films	Choi Woo Jin et al.	Macromolecules	52	7489
	Chemical Materials Solutions Center	Effects of carbon concentration on high-hardness plasma-polymer-fluorocarbon film deposited by mid-range frequency sputtering	Lee Jae Heung et al.	Scientific Reports	9	10664
	Chemical Materials Solutions Center	Gas barrier and mechanical properties of a single- layer silicon oxide film prepared by roll-to-roll PECVD system	Lee Jae Heung et al.	Plasma Process. Polym.	16	1800170
	Chemical Materials Solutions Center	Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application	Lee Sang Jin et al.	Sol. Energy Mater. Sol. Cells	191	55
	Chemical Materials Solutions Center	Optical, electrical and surface properties of Cu/ plasma polymer fluorocarbon nanocomposite thin film fabricated using metal/polymer composite target	Lee Sang Jin et al.	Applied Science	9	1296
	Chemical Materials Solutions Center	Super-hydrophobic and antimicrobial properties of Ag-PPFC nanocomposite thin films fabricated using a ternary carbon nanotube-Ag-PTFE composite sputtering target	Lee Sang Jin et al.	Surface and Coatings Technology	370	18
	Chemical Analysis Center	Development of a liquid chromatography/tandem massspectrometry method for monitoring long- term exposure to the parabens	Cho Sung Hee et al.	Rapid Commun. Mass Spectrom	33	67
	Chemical Analysis Center	Facile synthesis of new quinazolinone benzamides as potent tyrosinase inhibitors: Comparative spectroscopic and molecular docking studies	Kim Chong Hyeak et al.	Journal of Molecular Structure	1198	126915

Research Department	Research Center	Title	Authors	Journal Title	Vol.	Page
	Chemical Analysis Center	NHC-copper-thiophene-2-carboxylate complex for the hydroboration of terminal alkynes	Kim Chong Hyeak et al.	Org. Biomol. Chem.	17	5249
	Chemical Analysis Center	Ultrasensitive Detection of VOCs Using a High- Resolution CuO/Cu20/Ag Nanopattern Sensor	Kim Chong Hyeak et al.	ADVANCED FUNCTIONAL MATERIALS	29	1808319
Chemical Platform Technology Division	Chemical Analysis Center	Chemically Denatured Structures of Porcine Pepsin using Small-Angle X-ray Scattering	Rho Ye Cheol et al.	Polymers	11	2104
	Chemical Analysis Center	Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal Alignment and Reliable Flexible Organic Field- Effect Transistors	Rho Ye Cheol et al.	ACS Appl. Mater. Interfaces	11	13481
	Reliability Assessment Center for Chemical Materials	Resistance to Cleavage of Core-Shell Rubber/ Epoxy Composite Foam Adhesive under Impact Wedge-Peel Condition for Automobile Structural Adhesive	Yoo Min Jae et al.	Polymers	11	152
	ССР	Adsorptive removal of nerve-agent simulant with zirconium-based metalorganic	Chang Jong-San et al.	Microporous and Mesoporous Materials	285	61
	ССР	Catalytic and sorption applications of porous nickel phosphate materials	Chang Jong-San et al.	Catalysis Today	324	154
	ССР	Direct chemical conversion of xylan into furfural over sulfonated graphene oxide	Chang Jong-San et al.	Catalysis Today	324	66
	ССР	Molecular Encapsulation of Trimeric Chromium Carboxylate	Chang Jong-San et al.	Chemi. Eur. J.	25	12889
	ССР	Porous Metal-Organic Framework CUK-1 for Adsorption Heat Allocation toward Green Applications of Natural Refrigerant Water	Chang Jong-San et al.	ACS Appl. Mater. Interfaces	11	25778
	ССР	Effects of Zeolite Supports on the Production of Fuel-Range Hydrocarbons in the Hydrotreatment of Various Vegetable Oils with Platinum-Based Catalysts	Kim Chul Ung et al.	J. Nanosci. Nanotech.	19	2443
	ССР	Hydroupgrading of Bio-Oil Over PtMg/KIT-6 Catalysts	Kim Chul Ung et al.	J. Nanosci. Nanotech.	19	1126
	ССР	Investigation of the Selective Production of Ethylene from Propylene Over Small-Pore Zeolites	Kim Chul Ung et al.	J. Nanosci. Nanotech.	19	2183
	ССР	Modeling of reaction and deactivation kinetics in methanol-to-olefins (MTO) reaction on SAPO-34	Kim Chul Ung et al.	Ind. Eng. Chem. Res.	58	13227
	ССР	Preparation of SSZ-13 zeolites from beta zeolite and their application in the conversion of ethylene to propylene	Kim Chul Ung et al.	Chemical Engineering J.	377	119546
	ССР	Propane to Light Olefins by One-Pot Cascade and Series Reactions	Kim Chul Ung et al.	Chemical Engineering J.	377	120114
	ССР	Synthesis of SSZ-13 zeolite in the presence of dimethylethylcyclohexyl ammonium ion and direct conversion of ethylene to propylene with the SSZ- 13	Kim Chul Ung et al.	Chemical Engineering J.	377	120116
	ССР	Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon	Kim Tae Wan et al.	Applied Catalysis B: Environmental	245	555
	CCP	Enhanced Electrochemical Oxygen Reduction Reaction Performance with Pt Nanocluster Catalysts Supported on Microporous Graphene-like 3D Carbon	Kim Tae Wan et al.	J. Electroanal. Chem.	838	89

Research Department	Research Center	Title	Authors	Journal Title	Vol.	
	ССР	Soft-to-hard consecutive templating one-pot route from metal nitrate/phenol resin/surfactant to mesoporous metal oxides with enhanced thermal stability	Lee Su Kyung et al.	Microporous and Mesoporous Materials	29	10
	CCP	Effect of a Li2Si03 phase in lithium silicate-based sorbents for CO2 capture at high temperatures	Park Yong Ki et al.	Separation and Purification Technology	214	
	CCP	Novel regenerable solid sorbents based on lithium orthosilicate for carbon dioxide capture at high temperatures	Park Yong Ki et al.	Separation and Purification Technology	214	
	CCP	Regenerable sodium-based lithium silicate sorbents with a new mechanism for CO2 capture at high temperature	Park Yong Ki et al.	Renewable Energy	144	
	ССР	The swing adsorption reactor cluster (SARC) for post combustion CO2 capture: Experimental proof- of-principle	Park Yong Ki et al.	Chemical Engineering J.	377	12
(CEVI	A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)	Kim Jung et al.	J. of Membrane Science	574	
(CEVI	Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine	Kim Jung et al.	ACS Nano	13	
(CEVI	Densification-induced Hollow Fiber Membranes using Crosslinked Thermally Rearranged (XTR) Polymer for CO2 Capture	Kim Jung et al.	J. of Membrane Science	573	
(CEVI	Cell Type-Specific Interferon- χ -mediated Antagonism of KSHV Lytic Replication	Kim Seong Jun et al.	Scientific Reports	9	2
(CEVI	Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN- β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway	Kim Seong Jun et al.	J. Microbiol. Biotechnol.	29	1
(CEVI	Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer's disease mouse model, and causes reduction of amyloid precursor protein.	Kim, Hong Gi et al.	Scientific Reports	9	8
(CEVI	Toosendanin From Melia Fructus Suppresses Influenza A Virus Infection by Altering Nuclear Localization of Viral Polymerase PA Protein.	Kwon SUN OH et al.	Front. Pharmacol.	10	1
(CEVI	Osthenol, a prenylated coumarin, as a monoamine oxidase A inhibitor with high selectivity	Park Chul Min et al.	Bioorg. Med. Chem. Lett.	29	ł
(CEVI	Discovery of (E)-5,5-difluoro-1-[2-[5- (3-fluorophenyl)pyridin-2-yl]vinyl] octahydrospiro(indene-2,5'-oxazolidin)-2'-one as a PAR-1 antagonist	Song Jong Hwan et al.	Bull. Korean Chem. Soc.	40	l
(CEVI	Natural Bis-Benzylisoquinoline Alkaloids- Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC- 5 Human Lung Cells	Song Jong Hwan et al.	Biomolecules	9	l
(CEVI	Study on the 2-phenylchroman-4-one derivatives and their anti-MERS-CoV activities	Song Jong Hwan et al.	Bull. Korean Chem. Soc.	40	ç
(CEVI	Synthesis and biological evaluation of 3-acyl- 2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives as potential MERS-CoV Inhibitors	Song Jong Hwan et al.	Bioorg. Med. Chem. Lett.	29	12
(CEVI	Adsorption characteristics of benzene on resin- based activated carbon under humid conditions	Suh Jeong Kwon et al.	J. Ind. Eng. Chem.	71	1
(CEVI	Zika Virus-Immune Plasmas from Symptomatic and Asymptomatic Individuals Enhance Zika Pathogenesis in Adult and Pregnant Mice	Young-Chan Kwon et al.	mBio	10	eO
Research Strategy	Office of Global Cooperation	How latecomers catch up to leaders in high-energy physics as Big Science: transition from national system to international collaboration	Ko Young Joo et al.	Scientometrics	119	
Division	Office of SME Support	How does open innovation lead competitive advantage? A dynamic capability view perspective	Lee Ki Baek et al.	PLOS ONE	14	e02

List of International Patents Issued in 2019

Country	Inventor	Title	Application Date	Application Number
PCT	AN, Ki-Seok	Manufacturing method of graphene oxides	2019-04-05	PCT/KR2019/004056
PCT	Chae Ho Jeong	A chlorination process using a crystalline carbon material as a catalyst	2019-04-23	PCT/KR2019/004877
PCT	Chae Ho Jeong	Method of methylchloride production by multi-reaction process	2019-09-17	PCT/KR2019/011970
PCT	Chang Jong-San	Energy saving type air dryer and preparing method of dry air using the same	2019-10-25	PCT/KR2019/014171
PCT	Chang Jong-San	Novel metal-organic framework having porous structure comprising Zirconium cluster secondary building units and multitopic organic linker molecules	2019-05-31	PCT/KR2019/006620
USA	Chang Jong-San	Organic-inorganic porous hybrid material containing intramolecular anhydride groups, adsorbent composition comprising the same and usage thereof for the separation of gaseous hydrocarbon mixtures	2019-04-17	16/342937
USA	Chang Tae Sun	Thermally Stable Monolith Catalysts for MethaneReforming and Preparing Method of the Same	2019-11-13	16/613,119
PCT	CHO SONG YUN	Carbon nanotube foam and thermoelectric comprising carbon nanotube foam	2019-12-31	PCT/KR2019/018825
CHN	Cho Sung Yun	Pyrimidine derivative compound, optical isomer thereof, or pharmaceutically acceptable salt thereof, and composition for preventing or treating tyro 3 related disease comprising same as active ingredient	2019-12-31	2.0188E+11
EPO	Cho Sung Yun	Pyrimidine derivative compound, optical isomer thereof, or pharmaceutically acceptable salt thereof, and composition for preventing or treating tyro 4 related disease comprising same as active ingredient	2019-11-04	18794872.4
JPN	Cho Sung Yun	Pyrimidine derivative compound, optical isomer thereof, or pharmaceutically acceptable salt thereof, and composition for preventing or treating tyro 5 related disease comprising same as active ingredient	2019-11-01	2019-560304
USA	Cho Sung Yun	Pyrimidine derivative compound, optical isomer thereof, or pharmaceutically acceptable salt thereof, and composition for preventing or treating tyro 6 related disease comprising same as active ingredient	2019-11-01	16/610327
CHN	Choi, Won Choon	A method for producing olefin by using circulating fluidization process	2019-12-02	2.0188E+11
JPN	Choi, Won Choon	A method for producing olefin by using circulating fluidization process	2019-12-02	567292/2019
KSA	Choi, Won Choon	A method for producing olefin by using circulating fluidization process	2019-10-30	519410416
USA	Choi, Won Choon	A method for producing olefin by using circulating fluidization process	2019-06-17	16/471383
CHN	Choi, Won Choon	A method for producing olefin comprising reduction pretreatment	2019-11-19	2.0188E+11
JPN	Choi, Won Choon	A method for producing olefin comprising reduction pretreatment	2019-12-02	567242/2019
KSA	Choi, Won Choon	A method for producing olefin comprising reduction pretreatment	2019-10-29	519410414
USA	Choi, Won Choon	A method for producing olefin comprising reduction pretreatment	2019-06-10	16/468204
USA	Choi, Won Choon	Catalyst for manufacturing olefin and continuousreaction regeneration method for manufacturing olefinusing the same	2019-05-14	16/349843

Country	Inventor	Title	Application Date	Application Number
CHN	Choi, Won Choon	Catalyst having enhanced stability, conversion ratio and selectivity for manufacturing olefin, and A method thereof	2019-12-02	2.0188E+11
JPN	Choi, Won Choon	Catalyst having enhanced stability, conversion ratio and selectivity for manufacturing olefin, and A method thereof	2019-12-02	567355/2019
KSA	Choi, Won Choon	Catalyst having enhanced stability, conversion ratio and selectivity for manufacturing olefin, and A method thereof	2019-10-30	519410415
USA	Choi, Won Choon	Catalyst having enhanced stability, conversion ratio and selectivity for manufacturing olefin, and A method thereof	2019-06-11	16/468556
PCT	CHUNG, TAEK-MO	Group IV transition metal compounds, preparation method thereof and process for the formation of thin films using the same	2019-10-18	PCT/KR2019/013698
CHN	Ha Jae Du	Novel piperidine-2,6-dione derivatives and use thereof	2019-11-12	2.0188E+11
EPO	Ha Jae Du	Novel piperidine-2,6-dione derivatives and use thereof	2019-10-28	18798940.5
JPN	Ha Jae Du	Novel piperidine-2,6-dione derivatives and use thereof	2019-11-06	561172/2019
PCT	Ha Jae Du	Novel piperidine-2,6-dione derivatives and use thereof	2019-11-07	PCT/KR2019/015061
USA	Ha Jae Du	Novel piperidine-2,6-dione derivatives and use thereof	2019-10-31	16/609805
PCT	Heeyeong Cho	Novel tricyclic compound as IRAK4 inhibitors	2019-11-20	PCT/KR2019/015948
EPO	Hwang Sung Yeon	Method for preparing poly(arylene ether) copolymers containing isohexide unit and poly(arylene ether) copolymers prepared therefrom	2019-12-04	18831710.1
USA	Hwang Sung Yeon	PBS composite material and method for producing same	2019-12-20	16/625,260
JPN	Hwang Sung Yeon	Self-healable thermoplastic polyurethane copolymer containing aromatic disulfide bonds, and method for preparation thereof	2019-10-09	PCT/KR2018/007866
USA	Hwang Sung Yeon	Self-healable thermoplastic polyurethane copolymer containing aromatic disulfide bonds, and method for preparation thereof	2019-12-02	16/618582
PCT	Hwang Young Kyu	The Catalyst for preparing 1,2-pentanediol and Method for preparing 1,2-pentanediol using the same	2019-07-04	PCT/KR2019/008195
PCT	Iljeong Heo	Automatically pressure-controlled gas generator	2019-03-26	PCT/KR2019/003468
PCT	Iljeong Heo	CDR reactor for preventing catalyst inactivation having multi-layered catalyst	2019-11-22	PCT/KR2019/016143
PCT	Iljeong Heo	deNOx catalyst with improved NOx reduction performance, method of manufacturing the same and NOx abatement method	2019-06-28	PCT/KR2019/007916
USA	Iljeong Heo	Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof	2019-06-21	16/448692
USA	Iljeong Heo	Exhaust gas post processing apparatus	2019-11-25	16/694508

Country	Inventor	Title	Application Date	Application Number
USA	Jeon Jong Yeol	Catalyst for olefin metathesis and method for preparing thereof	2019-02-28	16/329469
PCT	Jeyoung Park	Method for producing aramid nano fiber dispersion	2019-03-19	PCT/KR2019/003169
JPN	Joo Jeong Chan	Recombinant corynebacterium glutamicum strain for producing glutaric acid and method of producing glutaric acid by using same	2019-08-22	2019-151894
USA	Joo Jeong Chan	Recombinant corynebacterium glutamicum strain for producing glutaric acid and method of producing glutaric acid by using same	2019-08-22	16/548093
PCT	Jun Ki Won	Energy-Efficient System and Method for Direct Hydrogenation of Carbon Dioxide	2019-05-29	PCT/KR2019/006437
PCT	Jun Ki Won	System for producing syngas from carbon dioxide through a redox process and the method thereof	2019-03-28	PCT/KR2019/003671
PCT	Jun Kun	Carbazole multi $\beta\mbox{-}oxime$ ester derivative compounds and, photopolymerization initiator and photoresist composition containing the same	2019-12-27	PCT/KR2019/018657
USA	Ka Jae Won	Updatable holographic writing method with high sensitivity and fast dynamics proprties utilizing photo-responsable polymer material	2019-11-08	16/678963
PCT	Kang Na Young	Catalyst for manufacturing light olefin, method for manufacturing the same, and method for manufacturing light olifin using the same	2019-05-02	PCT/KR2019/005245
PCT	Kang Na Young	Method for manufacturing ZSM-5 type zeolite	2019-05-02	PCT/KR2019/005992
USA	Kim Byoung Gak	A compound having bis phenylene group substituted with alkylamide, Composition for controlling polyphenylene polymer flowability comprising thereof and method of polyphenylene polymer flowability cont	2019-01-15	16/248556
PCT	Kim Hyoung Rae	Novel quinolinone derivatives, preparation method thereof, and an antiviral composition containing the same as an active ingredient	2019-09-11	PCT/KR2019/011856
USA	Kim Jeong Hoon	BCDA-based semi-alicyclic polyimide membrane materials for gas separation and the preparation methods	2019-11-20	16/689651
CHN	Kim Jeong Hoon	Purification technology for the recovery of high purity N2O from emission gases in adipic acid production process	2019-01-18	2.0178E+11
PCT	Kim Mee hyein	Novel nucleoside or nucleotide derivatives, and use thereof	2019-01-24	PCT/KR2019/001036
PCT	Kim Seong Jun	Cell penetrating peptide derived from human CLK2 and cargo delivery system using the same	2019-12-16	PCT/KR2019/017828
PCT	Kim Seong Jun	Cell penetrating peptide derived from human GPATCH4 and cargo delivery system using the same	2019-12-16	PCT/KR2019/017830
PCT	Kim Seong Jun	Cell penetrating peptide derived from human LRRC24 and cargo delivery system using the same	2019-12-16	PCT/KR2019/017829
PCT	Kim Seong Jun	Vectors for expressing recombinant antigens using CRISPR and method for simultaneously multiplexing thereof	2019-09-11	PCT/KR2019/011830
PCT	Kim Yong Tae	Fishcer-Tropsch Catalysts for Preparing Long Chain Olefin and Method for Preparing Long Chain Olefin Using the Same	2019-02-13	PCT/KR2019/001269
PCT	Kim Yong Tae	Method for preparing catalysts for oxygen-free direct conversion of methane	2019-09-24	PCT/KR2019/012390
USA	Kim Yong Tae	Reactor for Oxygen-free Direct Conversion of Methane and Method for Preparing Aromatic Hydrocarbon and Ethylene Using the Same	2019-10-30	16/667,936

Country	Inventor	Title	Application Date	Application Number
AUS	Ko Young Kwan	Pyridine derivatives possessing isoxazoline ring and their use as herbicides	2019-01-23	2017287716
EPO	Ko Young Kwan	Pyridine derivatives possessing isoxazoline ring and their use as herbicides	2019-01-10	17820499.6
INA	Ko Young Kwan	Pyridine derivatives possessing isoxazoline ring and their use as herbicides	2019-01-16	PID201900387
IND	Ko Young Kwan	Pyridine derivatives possessing isoxazoline ring and their use as herbicides	2019-01-10	2.01917E+11
VIE	Ko Young Kwan	Pyridine derivatives possessing isoxazoline ring and their use as herbicides	2019-01-23	1-2019-00410
PCT	Kwak Geun Jae	Catalytic Structure for Fischer—Tropsch Synthesis	2019-05-31	PCT/KR2019/006595
PCT	Kwak Geun Jae	Direct Method for Preparing Monocyclic Aromatics by Using Syngas	2019-10-30	PCT/KR2019/014465
PCT	Kwak Geun Jae	Stabilizing electric power system using plasma reforming module	2019-07-17	PCT/KR2019/008829
CHN	Kwan-Young Jeong	Composition for reinforcement of pancreas function	2019-03-29	2.0178E+11
EPO	Kwan-Young Jeong	Composition for reinforcement of pancreas function	2019-02-27	17839857.4
JPN	Kwan-Young Jeong	Composition for reinforcement of pancreas function	2019-02-12	507773/2019
USA	Kwan-Young Jeong	Composition for reinforcement of pancreas function	2019-02-12	16/325073
JPN	Lee Chang Jin	Oxime ester based photoinitiator and photosensitive compositions including the same	2019-01-08	500541/2019
PCT	Lee Chang Jin	Pigment particles with improved in insulation, dispersibility and resistance	2019-05-23	PCT/KR2019/006180
PCT	Lee Chul Wee	Catalyst precursor for hydrocracking and method for hydrocracking of heavy oil using thereof	2019-06-27	PCT/KR2019/007776
EPO	Lee Hyeon-Kyu	Pharmaceutical Composition Containing DUSP1 Inhibitor	2019-10-22	18783771.1
USA	Lee Hyeon-Kyu	Pharmaceutical Composition Containing DUSP1 Inhibitor	2019-10-09	16/603993
PCT	Lee Hyuk	Compounds for inhibiting TNIK and medical uses thereof	2019-01-31	PCT/KR2019/001403
PCT	Lee Hyuk	Hetero ring-fused phenyl compounds for inhibiting TNIK and medical uses thereof	2019-01-31	PCT/KR2019/001404
PCT	Lee Jaemin	Composition for organic electroluminescent device and novel organic electroluminescent and organic electroluminescent device comprising the same	2019-07-04	PCT/KR2019/008179
PCT	Lee Jong Cheol	Hybrid self-chargeable battery structure	2019-08-02	PCT/KR2019/009664
PCT	Lee Joo Youn	Human NADP-dependent steroid dehydrogenase-like (NSDHL) enzyme inhibitors and pharmaceutical composition for use in preventing or treating cancer or hypercholesterolemia containing the same as an active ingredient	2019-08-29	PCT/KR2019/011094

EP0

Country	Inventor	Title	Application Date	Application Number
CHN	Lee Joo Youn	Pharmaceutical composition for prevention and treatment of DYRK1A related diseases comprising pyridine compounds	2019-08-14	2.0178E+11
EPO	Lee Joo Youn	Pharmaceutical composition for prevention and treatment of DYRK1A related diseases comprising pyridine compounds	2019-06-19	17881667.4
JPN	Lee Joo Youn	Pharmaceutical composition for prevention and treatment of DYRK1A related diseases comprising pyridine compounds	2019-06-14	532126/2019
USA	Lee Joo Youn	Pharmaceutical composition for prevention and treatment of DYRK1A related diseases comprising pyridine compounds	2019-06-14	16/470014
PCT	Lee Kwangho	Isoindolin-1-one derivatives, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer containing the same as an active ingredient	2019-08-12	PCT/KR2019/010202
USA	Lee Kwangho	Novel [1,2,4]Triazolo[4,3-a]quinoxaline derivatives, preparation method therof, and pharmaceutical composition for use in preventing or treating BET protein related diseases containing the same as an active ingredient	2019-07-25	16/480908
BRA	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-05-08	BR 1120190094326
CAN	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-05-08	3043295
CHN	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-06-26	2.0178E+11
EPO	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-06-06	17868973.3
HKG	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-10-16	19131037.4
JPN	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-05-08	2019-535276
USA	Lee Kwangho	Novel pyrimidine compounds, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer and inflammation disease containing the same as an active ingredient	2019-05-03	16/347480
PCT	Lee Sang Goo	Method of preparing heptafluoroisopropyl trifluorovinyl ether	2019-08-28	PCT/KR2019/011008
PCT	Lee, Jeong O	Graphene complex for electron microscope observation and method for producing sample substrate	2019-12-06	PCT/KR2019/017192
PCT	Lee, Jeong O	Preparing method of sensor device and sensor device made thereby	2019-07-02	PCT/KR2019/008023
AUS	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-02-07	2017304434
BRA	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-01-29	BR112019001805-0
CAN	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-01-28	3032270
CHN	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-01-29	2.0178E+11

Lim Hwan Jung Compound inhibiting formation of C-MYC/MAX/DNA complex

2019-02-04

17834751.4

Country	Inventor	Title	Application Date	Application Number
INA	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-02-26	P-00201901661
IND	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-01-14	2.01917E+11
MEX	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-01-28	MX/A/2019/001202
RUS	Lim Hwan Jung	Compound inhibiting formation of C-MYC/MAX/DNA complex	2019-02-27	2019105499
PCT	Lim Hwan Jung	Compound inhibiting YAP-TEAD interaction and Pharmaceutical Composition for Treating or Preventing Cancer comprising the same as an active ingredient	2019-11-08	PCT/KR2019/015172
PCT	Lim Hwan Jung	Pharmaceutical Composition for Treating or Preventing Cancer comprising compound inhibiting interactions between YAP and TEAD	2019-09-04	PCT/KR2019/011422
AUS	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-02-07	2017304546
BRA	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-29	BR 11 2019 001808-5
CAN	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-28	3032293
CHN	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-29	2.0178E+11
EPO	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-02-08	17834790.2
INA	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-02-26	P-00201901662
IND	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-02-18	2.01917E+11
JPN	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-25	503984/2019
MEX	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-28	MX/A/2019/001210
RUS	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-02-27	2019105506
USA	Lim Hwan Jung	Pharmaceutical compounds having anti-cancer effect	2019-01-29	16/321631
PCT	Lim Hwan Jung	Pyrazole carboxamide compounds containing organosulfur group and insecticide composition comprising same	2019-01-31	PCT/KR2019/001339
USA	Noh, Jun Hong	Highly Stable Inorganic—Organic Hybrid Solar Cells	2019-01-29	16/260647
PCT	Oh Kwang-Seok	Compound for inhibiting PDE9A and medical uses thereof	2019-12-05	PCT/KR2019/017127
PCT	Oh Kwang-Seok	Compound for inhibiting PDE9A and medical uses thereof	2019-12-05	PCT/KR2019/017128
PCT	Park Dae Sung	A catalyst for manufacturing olefin, including oxygencarrier material and dehydrogenation catalyst	2019-05-14	PCT/KR2019/005548
PCT	Park Dae Sung	A method for producing olefin by using circulating fluidization process	2019-12-04	PCT/KR2019/016985
PCT	Park Dae Sung	Catalyst having enhanced conversion ratio and selectivity for manufacturing olefin, and a manufacturing method thereof	2019-04-15	PCT/KR2019/004511

USA

Yu Ju Hyun

Country	Inventor	Title	Application Date	Application Number
PCT	Park In Joon	The advanced preparation method and apparatus for trifluoroamine oxide	2019-05-31	PCT/KR2019/006580
TPE	Park In Joon	The advanced preparation method and apparatus for trifluoroamine oxide	2019-08-01	108127424
USA	Park In Joon	The advanced preparation method and apparatus for trifluoroamine oxide	2019-12-19	16/624,735
PCT	Park In Joon	The preparation method for trifluoroamine oxide	2019-05-31	PCT/KR2019/006582
TPE	Park In Joon	The preparation method for trifluoroamine oxide	2019-08-01	108127423
USA	Park In Joon	The preparation method for trifluoroamine oxide	2019-12-19	16/624,752
EPO	Park, Ji Hoon	System for storage and release of hydrogen using pyridine-based hydrogen storage materials	2019-02-19	17848943.1
PCT	Park Jong Mok	Composition comprising phase change material and method for producing thereof	2019-12-20	PCT/KR2019/018165
CHN	Park Jong Mok	Photonic crystal structure and colorimetric film for preventing forgery including the same	2019-07-04	2.0188E+11
EPO	Park Jong Mok	Photonic crystal structure and colorimetric film for preventing forgery including the same	2019-07-19	18735952.6
IND	Park Jong Mok	Photonic crystal structure and colorimetric film for preventing forgery including the same	2019-08-02	2.01937E+11
JPN	Park Jong Mok	Photonic crystal structure and colorimetric film for preventing forgery including the same	2019-07-04	536832/2019
PCT	Park Yong Ki	Catalyst regenerator	2019-05-10	PCT/KR2019/005644
USA	Park Yong Ki	Catalyst regenerator, fluid catalystic crackingreaction system, and catalyst regeneration method	2019-03-22	16/336040
USA	Pilho Kim	Pyrazolopyrimidine derivatives, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer, autoimmune disease and brain disease containing the same as an active ingredient	2019-11-11	16/612592
PCT	Ryu Beyong Hwan	Bead for removing inorganic acid and manufacturing method thereof	2019-10-21	PCT/KR2019/013819
PCT	Ryu jae Wook	Thiophene Carboxamide Derivatives and Plant Disease Control Agents Containing the Same	2019-10-07	PCT/KR2019/013131
PCT	Seong Hwan KIM	Compositions for preventing or treating oral disease or bone disease	2019-09-20	PCT/KR2019/012220
PCT	Sohn, Eun-Ho	The fluorinated polymers with blood compatible property and thin film containing them	2019-12-10	PCT/KR2019/017415
PCT	Suh Jeong Kwon	Activated carbon catalyst for hydrogen peroxide decomposition, preparation method thereof and hydrogen peroxide decomposition method using the same	2019-10-31	PCT/KR2019/014597
USA	Young-Pyo Jeon	A method of preparing impregnating pitch from petroleum material and impregnating pitch prepared using the same	2019-06-25	16/473336
INA	Yu Ju Hyun	Recovery method for sugar solution prepared by enzymatic hydrolysis of biomass and an apparatus therefor	2019-02-15	P-00201901433

Recovery method for sugar solution prepared by enzymatic hydrolysis of

biomass and an apparatus therefor

2019-01-18

16/319167

Appendix

List of International Patents Registered in 2019

Country	Title	Inventor	Application Number	Registration Date	Registration Number
IND	Catalyst for converting sugar to sugar alcohols by catalytic hydrogenation, Preparing method of the same and Converting sugar to sugar alcohols using the same	Chang Jong-San	1931/MUMNP/2013	2019-01-03	305326
USA	Rh/WxC Heterogeneous catalyst for acetic acid synthesis by carbonylation reaction	Chang Tae Sun	15/540857	2019-02-05	10196339
USA	Rh-C3N4 Heterogeneous catalyst for acetic acid synthesis by carbonylation reaction	Chang Tae Sun	15/540497	2019-05-21	10293335
CHN	Synthetic method of metal nano-particle by continuous-reaction method and method of forming conductive metal thin film via solution-processed	Choi Young Min	2.0158E+11	2019-05-03	ZL 201580029015.3
USA	Metal nanoparticles, and preparation method therefor	Choi Young Min	15/314759	2019-07-30	10,363,602
USA	Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same	Choi, Won Choon	15/110229	2019-03-12	226757
EP0	Microspherical silicoaluminophosphate-34 catalyst with high performance $\&$ mechanical strength, Preparing method of the same and Preparing method of light olefins using that	Jeong Soon Yong	10825126.5	2019-01-09	2492010
FRN	Microspherical silicoaluminophosphate-34 catalyst with high performance $\&$ mechanical strength, Preparing method of the same and Preparing method of light olefins using that	Jeong Soon Yong	10825126.5	2019-01-09	2492010
GBR	Microspherical silicoaluminophosphate-34 catalyst with high performance $\&$ mechanical strength, Preparing method of the same and Preparing method of light olefins using that	Jeong Soon Yong	10825126.5	2019-01-09	2492010
GER	Microspherical silicoaluminophosphate-34 catalyst with high performance & mechanical strength, Preparing method of the same and Preparing method of light olefins using that	Jeong Soon Yong	10825126.5	2019-01-09	2492010
USA	Beta zeolite catalyst for preparation of mixture of BTEX(Benzene, Toluene, Ethylbenzene, Xylene) from poly aromatic hydrocarbons and preparation method thereof	Jeong Soon Yong	15/272687	2019-06-04	10307742
USA	Metal-loaded zeolite catalyst for dehydrogenation of light alkane and preparation method thereof	Jeong-Rang Kim	15/951152	2019-11-26	10487024
USA	A direct method for preparing monocyclic aromatics and longer-chain olefin by using CO2-rich syngas	Jun Ki Won	15/542264	2019-02-19	10208256
USA	Highly efficient methanol production method with low carbon dioxide emission	Jun Ki Won	15/502134	2019-02-26	10214469
CHN	Novel oxime ester compounds, photopolymerization initiator and photoresist composition containing the same	Jun Kun	2.0168E+11	2019-08-20	ZL 201680008616.0
CHN	Novel fluorenyl $\beta\text{-}oxime$ ester compounds, photopolymerization initiator and photoresist composition containing the same	Jun Kun	2.0158E+12	2019-09-24	ZL201580004793.7
EPO	Novel fluorene oxime ester compounds, photopolymerization initiator and photoresist composition containing the same	Jun Kun	13785166.3	2019-07-03	2 845 845
JPN	Metal fluoride-based red phosphors and light emitting device containing the same	Kim Chang Hae	515570/2018	2019-09-27	6591054
JPN	pyrimidine-2,4-diamine derivatives and pharmaceutical composition for anti cancer containing the same as an active ingredient	Kim Hyoung Rae	2016-573780	2019-11-22	6622726
USA	4-(2-amino-tetrahydronaphthaleneyl)pyrimidine derivatives, preparation method thereof, and pharmaceutical composition for use in preventing or treating cancer containing the same as an active ingredie	Kim Hyoung Rae	15/567224	2019-08-06	10369149
USA	Transition metal supported sulfonated polymer-aminated polymer complex membranes and olefin/paraffin separation process using the same	Kim Jeong Hoon	15/920962	2019-10-08	10434463
USA	Novel organic semiconductor compound, its production method and organic electronic device using them	Lee Jong Cheol	15/964451	2019-07-09	10344028
EPO	The fusion-type CO2 change-over system connecting the oxyfuel combustor and catalyst conversion process	Lee Kew Ho	13850853.6	2019-11-06	2915779

Country	Title	Inventor	Application Number	Registration Date	Registration Number
GBR	The fusion-type CO3 change-over system connecting the oxyfuel combustor and catalyst conversion process	Lee Kew Ho	13850853.6	2019-11-06	2915779
GER	The fusion-type CO4 change-over system connecting the oxyfuel combustor and catalyst conversion process	Lee Kew Ho	13850853.6	2019-11-06	6.02013E+11
USA	The fusion-type CO5 change-over system connecting the oxyfuel combustor and catalyst conversion process	Lee Kew Ho	14/439414	2019-01-15	10180253
USA	Double crosslinked sodium alginate/polyvinyl alcohol composite nanofiltration membrane and preparation method thereof	Lee Kew Ho	15/064317	2019-10-01	10427104
AUS	Pyrrolidine carboxamido derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for use in preventing or treating Bowel inflammation disease	Lee Kwangho	2016290963	2019-10-10	2016290963
COL	Pyrrolidine carboxamido derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for use in preventing or treating Bowel inflammation disease	Lee Kwangho	NC2017/0010530	2019-03-18	34907
EAPO	Pyrrolidine carboxamido derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for use in preventing or treating Bowel inflammation disease	Lee Kwangho	201791945	2019-09-30	33342
SIN	Pyrrolidine carboxamido derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for use in preventing or treating Bowel inflammation disease	Lee Kwangho	11201707145Q	2019-10-11	11201707145Q
USA	Compounds for inhibiting C-MYC/MAX/DNA complex formation	Lim Hwan Jung	15/909088	2019-03-12	10227306
CHN	Precursor layer for inorganic/organic hybrid perovskite compound	Noh, Jun Hong	2.0158E+11	2019-03-15	ZL 201580041999.7
EPO	Fabrication Method of Nanostructured Inorganic-Organic Heterojunction Solar Cells	Noh, Jun Hong	11744919.9	2019-06-12	2560212
JPN	Solar Cell with Pillar-Structured Photo Sensitizer	Noh, Jun Hong	2017-201595	2019-08-02	6564001
EP0	Process for catalytic cracking reaction of naphtha and methanol mixture	Park Yong Ki	15826774	2019-04-03	3176242
FRN	Process for catalytic cracking reaction of naphtha and methanol mixture	Park Yong Ki	15826774	2019-04-03	3176242
GER	Process for catalytic cracking reaction of naphtha and methanol mixture	Park Yong Ki	15826774	2019-04-03	6.02015E+11
NED	Process for catalytic cracking reaction of naphtha and methanol mixture	Park Yong Ki	15826774	2019-04-03	3176242
USA	Precursors for highly efficient inorganic/organic hybrid solar cells and method for its materials	Sang Il Seok	15/102403	2019-03-26	10243141
CHN	Back sheet for solar cell and solar cell comprising thereof	Soo Bok Lee	2.0148E+11	2019-02-19	ZL201480068757.2
EP0	Back sheet for solar cell and solar cell comprising thereof	Soo Bok Lee	14 872 669.8	2019-06-26	3085747
CHN	A substrate for surface-enhanced Raman scattering spectroscopy and a preparing method thereof	Suh, Yung Doug	2.0148E+11	2019-05-07	ZL201480051274.1
IND	Intra-nanogapped core-shell nanoparticle and preparation method thereof	Suh, Yung Doug	1813/KOLNP/2013	2019-06-24	314512
INA	Concentrated feedstuff using palm oil byproducts and method for preparing the same	Yu Ju Hyun	P-00201304511	2019-03-28	IDP0057567
MAS	Hydrolysis method of biomass with enzymes for reducing unfavorable metabolite by the contaminated microorganisms and apparatus therefor	Yu Ju Hyun	PI2017703715	2019-10-08	MY-171303-A
USA	Method for producing microbial inhibitor-free fermentable sugar solutions from lignocellulosic biomass	Yu Ju Hyun	14/991209	2019-06-25	10329589

Appendix

List of Technology Transferred in 2019

Name of Technology	Date of Signing
Improvement of properties of high-strength bead activated carbon for COV treatment and recovery	2019/01/11
Development of non-halogenated sulfonate metal salt flame retardant for polycarbonates	2019/01/11
Development of protein and cell separation kit using agarose-coated magnetic beads	2019/01/11
Technology for manufacturing of palladium catalytic ink	2019/01/30
New polymer membrane with crosslinked poly(vinyl alcohol) and manufacturing method thereof	2019/01/30
Method of manufacturing thallium nanowires and bismuth telluride using solvothermal method	2019/01/30
Evaluation of SAMIRNA drug for dengue fever using dengue animal infection model	2019/01/31
Method of manufacturing highly ionized calcium using sonochemical synthesis	2019/01/31
Knowhow on development of long-term reliability evaluation for outdoor plastic materials and surface treatment	2019/02/11
Development of rare disease treatment using composite prediction system	2019/02/15
Technology for manufacturing of composite for crop protection	2019/02/21
MERS antigen diagnostic technology	2019/02/28
Anionic multi-chain surfactant and manufacturing method thereof	2019/02/28
Technical information and knowhow on metal thin film fabrication	2019/02/28
Culture plate for 3D cell culture and 3D cell coculture method thereof	2019/03/04
PVDF manufacturing process technology	2019/03/12
Technical knowhow on MLK3 inhibitor	2019/03/18
Corrosive material extracting device and method thereof	2019/03/18
Plasma-based CO2 lipo and system development for composite gas manufacturing	2019/03/18
Method of manufacturing functional well plate	2019/03/20
Candidate drug for treatment of influenza virus	2019/04/11
Technology for development of cancer immunotherapy with CD39-CD73 inhibition using low molecular weight compounds	2019/04/19
Anticancer drug to inhibit binding of YAP-TEAD	2019/04/19
Technology for manufacturing of next-generation immunotherapy	2019/04/24
Technology for manufacturing of durable, organic fluorescent material to prevent forgery	2019/04/30
Selective hydrogenation catalyst and selective hydrogenation method thereof	2019/04/30

Name of Technology	Date of Signing
Manufacturing of eco-friendly non-crystalline superengineering plastic resin	2019/09/16
Catalyst for manufacturing of antimony-based acrylonitrile (AN)	2019/09/16
Technology for manufacturing of new metal catalyst for diol manufacturing	2019/10/10
BTK protein breakdown inducer technology	2019/10/15
Microspherical sustained release preparation and manufacturing method thereof	2019/10/15
Method of manufacturing lactonic sophorolipid	2019/10/30
Technology for manufacturing of vehicle exterior material polyDCPD	2019/10/30
Development of composite to harden soft tissue	2019/11/05
Method of controlling dispersion of polymer coagulant for water treatment (Industry-University-Research Institute Cooperative Technology Development Program)	2019/11/25
Method of mass producing non-oxidative exfoliated graphite through electrochemical treatment and device thereof	2019/11/27
Development of manufacturing process for exfoliated graphite-metal hybrid composite	2019/11/27
Knowhow on calcium phosphate catalytic technology for lactate-dehydrogenated acrylic acid	2019/11/29
Development, evaluation and mechanism study of 11 β -HSD1 inhibitor (KR-67607) for glaucoma treatment	2019/11/30
Analysis and development of adhesive materials for automobile component molding	2019/12/06
Technology for manufacturing of biodegradable plastic based on PBAT	2019/12/09
Acquisition of experimental reactive technology for ethylene tetramerization	2019/12/12
Technical support to acquire dying technology for paper used in records restoration	2019/12/12
Technical support for manufacturing of silver nano solution to manufacture antimicrobial weaved gloves	2019/12/12
Development of technology to manufacture high-purity urea solution and composites for use in by-product-free vehicles	2019/12/12
Support for acquisition of basic technology for waterborne polyurethane synthesis	2019/12/12
Development of anaerobic digestion methane generator to operate household fuel cells	2019/12/13
Technical support for cleaning during electropolishing of SUS surface to minimize impurities	2019/12/13
Technology for manufacturing of surfactant with enhanced adhesion for asphalt anti-stripping and warm asphalt mixture products	2019/12/13
Technology for development of EGFR inhibitor/decomposer	2019/12/17
Technology for candidate material used in selective inhibition of PI3K	2019/12/17
Manufacturing of hydrated chitosan and support for functional nanosheet manufacturing	2019/12/23

Name of Technology	Date of Signing
Development of candidate material for liver cirrhosis treatment through autophagy control	2019/04/30
Method of manufacturing cellulose nanofiber	2019/04/30
Production of L-lactic acid from lactobacillus paracasei LA104	2019/04/30
Technology for manufacturing of catalytic reaction system to retrieve carbon monoxide from formic acid	2019/05/23
Method of manufacturing cosmetic nanoparticle composition for whitening effect	2019/05/23
Knowhow on "polymer composite cured at low temperature for LCD polishing and patent analysis of catalysts cured at low temperature"	2019/05/24
Porous carbon structure comprised of porous polymers and manufacturing method thereof	2019/05/27
Carbazole ion exchange binder and fuel cell containing thereof	2019/05/31
Development of liver disease treatment using protein breakdown inducer platform technology	2019/06/01
Automatic expansion device containing highly functional bobbin	2019/06/03
Technology for novel, candidate material used in selective PDE9A inhibition	2019/06/10
Desiccant technology for households using hybrid nanoporous water adsorbent	2019/06/17
Development of technology for high-purity N2O recovery and refinement from highly concentrated exhaust gas	2019/06/20
Development of bemotrizinol UV adsorber for superabsorbent (at least UV 340nm, E 820) cosmetics	2019/07/02
Development of manufacturing technology for internal sheets of lignin-based eco-friendly vehicles	2019/07/02
Development of manufacturing technology for bio-derived epoxy resin below EEW 170	2019/07/02
Development of eco-friendly nano-cellulose film with superior gas barrier effect	2019/07/02
Development of insulation material and process technology for safety googles at high voltage of 22.9 kV	2019/07/02
Development of anaerobic digestion methane generator to operate household fuel cells	2019/07/02
Advanced CAR T cell treatment targeting immune checkpoint antigens	2019/07/12
Research on development of hepatitis B treatment using capsid inhibitor	2019/07/26
Knowhow on high-purity refinement of dipropylene glycol	2019/08/05
Nano/semi-nano long fibers and manufacturing method thereof	2019/08/13
Device for continuous manufacturing of carbon nanofibers with enhanced mechanical strength due to electrospinning and manufacturing method thereof	2019/08/13
Technology for manufacturing of dimers from Raman active molecules and nanoparticles	2019/08/30
Sepsis diagnostic kit and diagnostic method thereof	2019/08/30

KRICT Annual Report 2019

Publishing

KRICT (Korea Research Institute of Chemical Technology) 141 Gajeongro, Yuseong, Daejeon 34114, Korea

Publisher Yi Mihye

Editing Office of Global Cooperation

Date 2020.04.10

Design HIVE Partners www.hivepartners.co.kr

141 Gajeongro, Yuseong, Daejeon 34114, Korea www.krict.re.kr